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Introduction

The FANCy Project is an open source textbook on functional analysis, the mathematics of
quantum mechanics, noncommutative geometry and related topics.
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Fundamentals



|.1. Tools from Analysis

1.1. Some useful inequalities
In this section we collect several inequalities from real analysis which will be of use later in this
monograph.

1.1.1 Theorem (Young’s inequality) Let a,b > 0, and assume that p,q > 1 satisfy the rela-
tion + + 1 =1. Then
p'q ) )
ab < —aP + =09
p q
Equality holds if and only if a? = b9.

Proof. Since the second derivative exp” of the exponential function attains only positive values,
the function exp is strictly convex that means satisfies

exp (Az + (1 = A)y) < Xexp(z) + (1 — A) exp(y)

for all z,y € R and A € [0, 1] with equality holding true if and only if z = y or A € {1,0}. Putting
x=plna, y=qlnb, and A = % one obtains

1 1
ab = exp ()\:E +(1— )\)y) < dexp(x) + (1 =N exp(y) = —aP + =b7.
p q
Equality holds if and only if x = y which is equivalent to a? = b1. O

1.1.2 Theorem (Cauchy—Schwarz inequality for sums) Let v,w e C". Then

n 2 n n
Y| < (M) (X hwil?).
1=1 il 1=1

Equality holds true if and only if v and w are linearly dependant.

Proof. Let us use the inner product notation
n
(v,wy 1= Z viw; for v,w e C".
i=1

Then the ¢2-norm

n 1/2
vl := (Z |v¢|2> = (v, )1/

=1
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is well-defined and non-negative for any v € C". If |[v| = 0 or ||w|| = 0, then v = 0 or w = 0, and
the claim is trivial. So we assume |[jv|, |w| > 0 and compute

n
0 <{Jwlv = olw, |wlv = [ofw) = > (Jwlv = [v]w:) (|w]F - |o]w;) =
i=1

n
= D lwlPow; — [w] o] viws; — Jw] o] wiv; + |v]*wiw; =
=1

=2l (lolfw] - Reco, w)).

Now choose ¢ € C with |¢|] = 1 such that (v, w) = [{v,w)|. Replacing v by cv in inequality
(1.1.1) and observing that ||cv| and |w| are positive then entails

0 < [lev]Jwl] = Redev, w) = |v[[|w] = Re(clv, w)) = [vllw]| = (v, w)l,

which is the claimed Cauchy—Schwartz inequality for sums in abbreviated form.

Equality holds true if and only if |w|cv — |v|w = 0. So if |v|||w] = [{v,w)|, then v and w
are linearly dependant. To show the converse, assume that av = bw for some a,b € C with
(a,b) # (0,0). Because we consider the nontrivial case where both v and w are nonzero, we can
assume without loss of generality that b = 1. But then

v, w)| = [(v, av)| = lal|[v]* = |o] Jw] ,
hence equality holds in this case. The proof is finished. O
1.1.3 Besides the £2-norm on C" one has the so-called P-norms || - | : C* — Rx for p > 1. They

are defined by

n 1/P
lv]p = (Z \Uk\p) forveC".
k=1

The mazimum norm or £*-norm || - | is given by
[v]oo = sup{|vk| ‘ k= 1,...,n} .
The /P-norms are all norms indeed as we will later see.

1.1.4 Theorem (Holder’s inequality for sums) Let p,q € [1,0) such that % —l—% =1. Then
n
> owwg| < Jollp - Jwlg  for all v,we C™ .
k=1

Proof. If p =1 or ¢ = 1 the claim is immediate, because then ¢ = o0 or p = o0, respectively, and

the two estimates
n

D opwg| < (Z |Uk|> -sup {Jwg| | k=1,...,n}
k=1

k=1



L1. Tools from Analysis 1.1. Some useful inequalities

and
n n
D Jopw| < <Z |wk|> ~sup {|ug| [k =1,...,n}
k=1 k=1

obviously hold. So we can assume 1 < p,q < . Moreover we can assume that both v and w
are nonzero because otherwise the claim is trivial. Now observe that by Young’s inequality

ve|  |wg elP\NYP (N YT 1 oglP 1w
: = : < - + - for k=1 n
= < =1,...,n.

P q P q P q Y
lvllp  w] Iv]lp lwlg plvly g lwlig

Summing over all k£ gives

ZWMIWI1M%+HM$j+1_1
P q = =4
vl wlg — plolp  glwls p g
Multiplication of both sides by |v|, - |w], entails Holder’s inequality. O

1.1.5 Theorem (Minkowski’s inequality for sums) Let p € [1,00). Then

lv+wlp < fvllg + [wlp  for all v,we C™.

Proof. For p = 1 the claim is trivial, likewise for p = 00. So assume 1 < p < o and put q := ﬁ.
Then % + é = 1, and we can apply Holder’s inequality to compute
n n
o+l = 3 ow+wnl? < 3 fow for -+ el + el Jor + wiP ™! <
k=1 k=1
1/q 1/q

< Nollp - (lo + wl@99) ™+ ol - (Jog + i @707) 7 =

= (Iollp + Jwlp) o+ w]B/® .
Minkowski’s inequality follows. O



|.2. General Topology

2.1. The category of topological spaces

Topologies and continuous maps

2.1.1 Definition Let X be a set. By a topology on X on understands a set T of subsets of X
such that:

(Top0) The sets X and ¢J are both elements of T.

(Topl) The union of any collection of elements of T is again in T that means if (U;);es is a family
of elements U; € T, then | J,.; U; € T.

i€l
(Top2) The intersection of finitely many elements of T is again in T that means for every natural
nand Uy,...,U, € T one has ()_, U; € T.

A pair (X,7) is a called a topological space when X is a set and T a topology on X. Moreover,
a subset U of X is called open if U € T and closed if CxU € 7.

2.1.2 Remarks (a) Strictly speaking, Axiom |(Top0)| can be derived from Axioms |(Topl)| and
(Top2)] since the union of an empty family of subsets of X coincides with ¢, and the intersection

of an empty family of subsets of X coincides with X. Nevertheless, it is useful to require it, since
in proofs one often shows Axiom only for non-empty families of open sets, and Axiom
only for the case of the intersection of two open subsets. Then it is necessary to verify
Axiom too, when one wants to prove that a given set of subsets of X is a topology.

(b) When using the notation Ty for a topology we always mean that Tx is a topology on the
space X.

2.1.3 Examples (a) For every set X the power set P(X) is a topology on X. It is called the
discrete or strongest topology on X.

(b) The set { g, X } is another topology on a set X called the indiscrete or trivial or weakest
topology on X. Unless X is empty or has only one element, the discrete and indiscrete topologies
differ.

(c) Let S be a set {0,1}. Then the set {¢F,{1},{0,1}} is a topology on S which does neither
coincide with the discrete nor the indiscrete topology. The set S with this topology is called
Sierpiniski space. The closed sets of the Sierpiriski space are f, {0} and S.
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(d) The standard topology on the set of real numbers R consists of all subsets U < R such that
for each € U there are real numbers a, b satisfying a < < b and (a,b) € U. The standard
topology on R will be denoted by Tg.

Let us show that TR is a topology on R indeed. Obviously ¢J and R are elements of TJr. Let
U,V € Tg and x € U V. Then there are a,b, ¢,d € R such that z € (a,b) = U and xz € (¢,d) = V.
Put e := max{a,c} and f := min{b,d}. Then z € (e, f) = U n V, which proves U n'V € Tr. If
(Ui)ier is a family of elements U; € Tg and = € UZE[ Ui, then there exists an j € I with x € Uj.
Choose a,b € R such that = € (a,b) = U;. Then z € (a,b) < | J,.; U;, which proves | J,.; U; € ‘J'R
If not mentioned differently, we always assume the set of real numbers to be equipped with the
standard topology. The standard topology coincides with the metric topology induced by the
euclidean metric on R, see ??7. One therefore often calls Tr the euclidean topology on R. We will
use these terms interchangeably.

(e) The standard topology Tg on the set of rational numbers Q is defined analogously. It consists
of all subset U < Q such that for each x € U there exist rational numbers a,b with a < x < b
and (a,b) < U. Like for the reals one proves that Tg is a topology on Q. Unless mentioned
differently it is always assumed that Q comes equipped with the standard topology. Like for R,
the standard topology on QQ coincides with the euclidean topology on Q which is the one induced
by the euclidean metric.

(f) Let X be a set, and let Tcor denote the set of all subset of X which are either empty or have
finite complement in X. Then T, is a topology on X called the cofinite topology.

(g) Let X be a set, and let T¢o denote the set of all subset of X which are either empty or have
countable complement in X. Then T is a topology on X called the cocountable topology.

(h) Let X be a (nonempty) set, (Y,7T) be a topological space, and f : X — Y a function. Define

fT:=f'T={f(U)ePX)|UeT}.

Then (X, f*7) is a topological space. One calls f*T the initial topology on X with respect to f
or the topology on X induced by f.

Let us verify that f*J is a topology on X indeed. By f~1(Y) = X and f~1 (&) = & the sets X
and ¢J are in f*T. Now let (V;);er be a family of elements of f*J. In other words we have, for
each i€ I, V; = f~Y(U;) for some U; € T. Then U := | J,.; U; € T and

iel

Uvi-Usrtwo = (Uu) = e o

iel el el

Finally, let Vi,...,V, € f~'T. Then, by definition, there exist Uy,...,U, € T such that V; =
fYU;) fori=1,...,n. Thus U := (), U; € T and

Nvi=( ") = (ﬁ Ui) = 7)€ frT
i=1 i=1 i=1

(i) Let (X,T) be a topological space, Y a (nonempty) set, and g : X — Y a function. Define
9+T < P(Y) as the set of all U = Y such that g~ }(U) € T. Then ¢,7 is a topology on Y. It is
called the final topology on Y with respect to g or the topology on Y induced by g. If g: X - Y
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is a quotient map that means that g is surjective, then the final topology on Y induced by g is
also called the quotient topology on X induced by g.

Let us show why ¢.T is a topology on Y. Obviously, Y, € ¢.T. Let (U;)ier be a family of
elements of g,T. Then ¢g~!(U;) € T for all i € I which entails

g (Uv) =Us W er,

iel iel
hence |JU; € g.T. If Uy, ... Uy € g«7, then
iel
k

g Ui ...l = ﬂgfl(Ui) e 7.
i=1

So Uy n...n Ug € ¢g.T and the claim is proved.

2.1.4 Section[2.2]on fundamental examples collects several more examples of topologies. For now,
we will work out a few basic properties of topologies and their structure preserving morphisms,
the continuous maps defined below.

2.1.5 Definition Let (X, Tx) and (Y, Ty ) be two topological spaces and assume that f : X — Y
is a function. One says that f is continuous if for all U € Ty the preimage f~!(U) is open in X.
The map f is called open if f(V) is open in Y for all V € Tx.

2.1.6 Example Any constant function ¢ : X — Y between two topological spaces is continuous
since the preimage of an open set in Y is either the full set X or empty depending on whether
the image of ¢ is contained in the open set or not.

2.1.7 Theorem and Definition (a) The identity map idx on a topological space (X,Tx) is
continuous and open.

(b) Let (X,Tx), (Y,Ty) and (Z,Tz) be three topological spaces. Assume that f : X — Y and
g:Y — Z are maps. If f and g are both continuous, so is go f. If f and g are both open, then
go f is open as well.

(c) Topological spaces as objects together with continuous maps as morphisms form a category.
It is called the category of topological spaces and will be denoted by Top.

Proof. 1t is obvious by definition that the identity map idx is continuous and open. Now assume
that f and g are continuous and let U € Tz. Then ¢~ !(U) € Ty by continuity of g. Hence
f~1(g7Y(U)) € Tx by continuity of f. So g o f is continuous. If f and g are open maps, and
V e Tx, then f(V)e Ty and go f(V) = g(f(V)) € Tz. Hence the composition of two open maps
is open, too. The rest of the claim follows immediately. O
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Comparison of topologies

2.1.8 The initial topology f*Jy induced by a function f : X — Y between topological spaces
is a subset of the topology on X if and only if f is continuous. This motivates the following
definition.

2.1.9 Definition Let X be a set. Let T; and T2 be two topologies on X. One says that T7 is
finer or stronger than Ty and T is coarser or weaker than T1 when Ty < T7.

2.1.10 Of course, inclusion induces an order relation on topologies on a given set. A remarkable
property is that any nonempty subset of the ordered set of topologies on a given set always
admits a greatest lower bound.

2.1.11 Theorem Let X be a set. Let G be a nonempty set of topologies on E. Then the set

T = T={UePX)|UeT forall Te &}
Te6

s a topology on X and it is the greatest lower bound of &, where the order between topologies is
given by inclusion. In other words, Tg is the finest topology contained in each topology from &.

Proof. We first show that Tg is a topology. Since each T € & is a topology on X, we have
&, X €T for all T e &. Hence @, X € Tg.

Let (U;)ier be a nonempty family of elements U; € Tg. Let T € & be arbitrary. By definition of
T, we have U; € T for all 4 € I. Since T is a topology, | J,c; Ui € T. Hence, as T was arbitrary,

Now, let Uy, ..., U, € Ts. Let T € & be arbitrary. By definition of Tg, we have Uy,...,U, € T.
Therefore, U1 n...n U, € T since T is a topology. Since T was arbitrary in &, we conclude that
Ui n...nU, € Tg by definition.

el

So Ts is a topology on X. By construction, Tg < T for all T € &, so Tg is a lower bound for &.
Assume given a new topology Q on X such that Q@ < T for all T € &. Let U € Q. Then we have
U e T for all T € &. Hence by definition U € Tg. So @ c Tg and thus Tg is the greatest lower
bound of &. O

2.1.12 Corollary Let X be a set, (Y,7T) be a topological space, and f : X — Y a map. The
coarsest topology on X which makes f continuous is the initial topology f*T.

Proof. Let & be the set of all topologies on X such that f is continuous. By definition, f*7 is a
lower bound of &. Moreover, f*T € &. Hence f*7 is the coarsest topology making the function
f: X — Y continuous. ]

2.1.13 Proposition Let (X,T) be a topological space, Y a set, and g : X — Y a map. The
finest topology on'Y which makes g continuous is the final topology g+ 7.

Proof. Let 8 be a topology on Y so that g : (X,7) — (Y,8) is continuous. Let U € 8. Then
g Y (U) € T by continuity of g : (X,T) — (¥,8). Hence U € ¢,T by definition, and § = T. Since
g:(X,T) = (Y,9:7) is continuous by definition, the claim follows. O
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2.1.14 We can use Theorem [2.1.11] to define other interesting topologies. Note that trivially
P(X) is a topology on a given set X, so given any 8 < P(X) there is at least one topology
containing §. From this:

2.1.15 Proposition and Definition Let X be a set, and 8 a subset of P(X). The greatest
lower bound of the set

S ={TeP(P(X))|T is a topology on X &8 < T}

is the coarsest topology on X containing 8. We call it the topology generated by 8 on X and
denote it by Tg. The topology Tg consists of unions of finite intersections of elements of 8 that
means

nj
Ts = {U e P(X) |37 ¥j € J3n; e NIy, Upn, €8 U = |J [ U} -
jed k=1
Proof. By definition of & and Theorem [2.1.11] Tg = (gcg T is a topology on X which contains
8. Hence Tg is an element of G and a subset of any element of &. The first claim follows. To
verify the second, observe that it suffices to show that

n;
Ri= {U e P(X)|3V) € Jn; eN3Ujs,..., Ujn, €8+ U = |J [ Usa}
jeJ k=1
is a topology. The set R being a topology namely entails Tg < R because § < R. The inclusion
R < Tg is clear by definition, since Tg is a topology containing §. So let us show that R is a
topology. Obviously ¢§ and X are elements of R because UZ-E@ U; = & and ﬂgzl U, =X. Now
assume that (U;);er is a family of elements of R. Then there exists for each i € I a set J; and for

every j € J; a natural number n; ; together with elements U; j1,...,U;jn, ; € 8 such that
niy]-
U= J () Uik -
jEJi k=1

Put J := [J,c;{i} x Ji. Then

U::UUi:UU ﬁUi,j,k: U ﬁU@ngEfR.

iel i€l jeJ; k=1 (i,4)eJ k=1
Last assume Uy, ...U, € T where n € N. Then one can find for each i € {1,...,n} a set J; and
for every j € J; a natural number n; ; together with elements U; ;1,. .., Ui,jm’j € 8 such that
Mi, 5
U= J () Uik -
jed; k=1

Put J:=J; x ... x J,. Then

n n 4,5 1,51 Nn,jn
U .= ﬂ U@' = ﬂ U ﬂ Ui,j,k = U ﬂ U17j1,/<?1 N...N ﬂ Un7jn7kn eR.
i=1 i=1 jeJ; k=1 (jl,...,jn)EJ k1=1 kn=1
Hence R is a topology, indeed, and the proposition is proved. ]

2.1.16 Definition Let X be a set, and T a topology on X. One calls a subset § € T a subbase
(or subbasis) of the topology if T coincides with Tg. If in addition X = | Jgcg S, the subbase 8 is
said to be adequate.
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Bases of topologies

2.1.17 When inducing a topology from a family B of subsets of some set X, the fact that B
enjoys the following property greatly simplifies the description of the topology T3 generated by
B.

2.1.18 Definition Let X be a set. A base (or basis) on X is a subset B of the powerset P(X)
such that

(Bas1) X = Upen B.

(Bas2) For all By, By € B and all x € By n By there exists a B € B such that z € B and
B c Bl M BQ.

The main purpose for this definition stems from the following theorem:

2.1.19 Theorem Let X be some set. Let B be a base on X. Then the topology generated by B
coincides with the set of unions of elements of B that means

TBZ{UBET(?(X))‘UcB} .

BelU

Proof. Denote, for this proof, the set {UBeuB | uc B} by 8§ and let us abbreviate Ty by 7.
We wish to prove that T = 8. First, note that B < 8§ by construction. By definition, B < 7.
Since T is a topology, it is closed under arbitrary unions. Hence § © TJ. To prove the converse, it
is sufficient to show that § is a topology. As it contains B, and T is the smallest such topology,
this will provide us with the inverse inclusion. By definition, | J peg B = @ and thus (J € 8. By
assumption, since B is a base, X = | Jg.g B so X € 8. As the union of unions of elements in B is
a union of elements in B, § is closed under abritrary unions. Now, let By, By be elements of B.
If B1 n By = g then By n By € 8. Assume that B and By are not disjoints. Then by definition
of a base, for all x € B1 n By there exists B, € B such that x € B, and B, < B1 n Bs. So

BinBy= |J B.,
(EEBl ﬁBQ
and therefore, by definition, By n Bs € §. We conclude that the intersection of two arbitary ele-

ments in 8 is again in 8§ by using the distributivity of the union with respect to the intersection.[]

2.1.20 Definition We shall say that a base B on a set X is a base for a topology T on X when
the smallest topology containing B coincides with T, in other words when T = Tg.

The typical usage of the preceding theorem comes from the following result.

2.1.21 Corollary Let B be a base for a topology T on X. A subset U of X is in T if and only
if for evry x € U there exists B € B such that t€ B and B c U.

Proof. We showed that any open set for the topology T is a union of elements in B. Hence if
x € U for U € T then there exists B € B such that x € B and B < U. Conversely, if U is some
subset of X such that for all x € U there exists B, € B such that x € B, and B, < U, then
U =,y Br and thus U € T. O
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The last result in this section is a useful tool for showing continuity of a map.

2.1.22 Proposition Let (X,Tx) and (Y,Ty) be two topological spaces, A a base for the topology
Tx and B a base for the topology Ty. Assume further that f : X — Y is a map. Then the
following are equivalent:

(i)  The map f is continuous.
(ii) For every openV <Y and all x € f~Y(V) there exists A € A such that x € U and f(A) < V.
(iii) For every B € B the preimage f~1(B) is open in X.

Proof. Obviously, implies

Assume that (i) holds and that V < Y is open. Let x € f~}(V) and put y = f(x). Theny e V.
Since B is a base for the topology Ty there exists B € B such that z € B < V. By assumption
f7Y(B) is open in X and z € f~(B). Since A is a base for the topology T, there exists A € A
such that z € A  f~Y(B). Since f~1(B) c f~1(V), follows.

Now assume that holds true. Let V < Y be open, and choose for every x € f~1(V) a base
element A, € A such that x € A, = f~1(V). Then f~}(V) = Uses-1(v) Az which is open in X.
Hence f is continuous. O

2.2. Examples and categorical constructions of topological spaces

This section provides various examples and constructions of topological spaces which will be used
all along in this monograph.

The order topology

2.2.1 Proposition Let (X, <) be a totally ordered set, and assume that o0, —o0 are two symbols
not in X. Define [-00,0]y = X U {—00,00} and extend < to [—o0, 0]y by requiring x <y
for x,y € [—w0, 0]y to hold when z,y € X and x < y, when x = —o0, or when y = . Then
[—00, 0]y together with the relation < becomes a totally ordered set as well, and the embedding
X — [—00, 0]y is order-preserving.

Proof. By definition, the relation < on [—o0, ] is reflexive, and any two elements of [—c0, 0] i
are comparable. Also by definition, x < —o0 is equivalent to x = —o0 and o0 < y equivalent
to y = 00. Since the restriction of < to X is antisymmetric by assumption, < therefore is an
antisymmetric relation on [—o0, @] . Using the definition of < again one finally observes that
for z,y, z € [-o0, 0] the following implications hold true.

—o<y&y<z = —0 <z
r<—0& — 0Kz = r=-w0<<Kz
r<y&y< -0 = x=9y=—00

r<y&ky<ow = r<®©
r< o0&k = < 0=z
o<y&ky<zs = o=y==z.

11



I1.2. General Topology 2.2. Examples and categorical constructions of topological spaces

Since its restriction to X is already transitive, transitivity of < now follows and the proposition
is proved. ]

2.2.2 Remark For the rest of this paragraph we always assume that an ordered set (X, <)
does not contain the symbols o0, —00, and that [—o0, 0] y and the extended order relation < are
defined as in the preceding proposition.

2.2.3 Definition For a totally ordered set (X, <), define intervals with boundaries x,y €
[—o0, 0] as follows:

(2, 9):=(z,9) x == {z € [~o0,0] |z < 2 <y},
[2,y):= [2,y) x := {7 € [-o0, 0] [z < 2 <y},
(z,y] == (z,ylx == {z€[-» ]|$<Z\y}
[z, y] := [z,y]x = {z€[-0,0] |2 <2<y} .

The intervals (z,y)y are called open intervals, intervals of the form [z,y] are called closed
intervals, and intervals of the form [z,y) y or (x,y]y are the half-open intervals.

2.2.4 Remarks (a) Note that in case = y only the closed interval [z,z]y is non-empty. In
case y < x all the intervals (z,v) v, [2,Y) x, (z,y] yx, and [z,y]y are empty.

(b) We mostly use the notation (x,y), [z, y], etc. for intervals and denote the X in intervals only
when otherwise some ambiguity could appear.

2.2.5 Definition Let (X, <) be a totally ordered set. Then the topology generated by the set
is called the order topology on X. It is usually denoted T(x ).

2.2.6 Proposition Let (X, <) be a totally ordered set. Then the set Ix is a base for the order
topology on X. A subbase of the order topology is given by the set Sx of rays (x,0) and (—0,y),
where x,y run through the elements of X.

Proof. Since X is totally ordered, so is [—00, c0]. It is immediate that (z,y) n (2/,y) = (w, 2) if
w is the largest of z and 2/ and z is the smallest of y and 1’. Hence Jx is a base of the order
topology.

Since (x,00) N (—o0,y) = (z,y) for x < y, the set Sx is a subbase of the order topology. O

2.2.7 Example The standard topology on R from Example [(d) ] is the order topology.
Likewise, the standard topology on QQ coincides with the order topology.

2.2.8 Remark If X neither has a minimum nor a maximum, one usually denotes the space
[0, 0] by X. This notation fits with the understanding that ~ denotes the closure operation,
because the closure of X in [—o00, 0] with respect to the order topology coincides with the full
space [—00, 0] under the assumptions made.

Extending the ordered set of real numbers (R, <) in that way gives the so-called extended real
number system R.

12
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The subspace topology

2.2.9 Proposition and Definition Let (X,T) be a topological space. Let S < X and 1 : S —
X the canonical embedding. Then initial topology 1*T coincides with

TX ={UnSePS)|UeT}.

One calls ‘If,( the subspace or trace topology on S. Sometimes one says that ‘.T})f is the topology
induced by (X, 7).

Proof. The claim follows immediately from the definition of the initial topology ¢*7. ]

Just as easy is the following observation:

2.2.10 Proposition Let (X,T) be a topological space, and S < X a subset. Let B be a basis for
J. Then the set
BX :={BnSec?PS)|Be B}

is a basis for the subspace topology on S induced by (X,T).
Proof. Trivial exercise. O

2.2.11 Example The default topologies on N and Z are the subspace topologies induced by the
standard topology on R. Since {n} = (n — %,n + %) N 7Z for all n € Z, we see that the natural
topologies on N and Z are in fact the discrete topologies. The topology on Q induced by the
standard topology on R coincides with the default topology on Q (which is, as pointed out above,
the same as the order topology).

The quotient topology
The product topology

2.2.12 Definition Let I be some nonempty set. Let us assume given a family (X;, T;)er of
topological spaces. Consider the cartesian product X := [[,.; X; and denote for each j € I by
7j: X — Xj, (x;)ier — x; the projection on the i-th coordinate. The initial topology on X with
respect to the

basic open set of the cartesian product [ [,.; E; is a set of the form [ [,_; U; where {i € I : U; + E;}

is finite and for all i € I, we have U; € TJ;.

el

2.2.13 Definition Let I be some nonempty set. Let us assume given a family (E;, T;);er of
topological spaces. The product topology on [ [..; E; is the smallest topology containing all the
basic open sets.

el

2.2.14 Proposition Let I be some nonempty set. Let us assume given a family (E;, T;)ier of
topological spaces. The collection of all basic open sets is a basis on the set | [,.; E;.

Proof. Trivial exercise. O

13
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2.2.15 Remark The product topology is not just the basic open sets on the cartesian products:
there are many more open sets!

2.2.16 Proposition Let I be some nonempty set. Let us assume given a family (E;, T;)ier of
topological spaces. The product topology on | [,o; Es is the initial topology for the the set {p; : i € I}
where p; Hje] E; — FE; is the canonical surjection for all i € I.

Proof. Fix i € I. Let V € Tg,. By definition, p; *(V) = [Lje; Uj where U; = Ej for j e I\{i},
and U; = V. Hence pi_l(V) is open in the product topology. As V was an arbitrary open subset
of E;, the map p; is continuous by definition. Hence, as i was arbitrary in I, the initial topology
for {p; : i € I} is coarser than the product topology.

Conversely, note that the product topology is generated by {pfl(V) ci1e I,V e Tg}, soitis
coarser than the initial topology for {p; : i € I'}. This concludes this proof. O

2.2.17 Corollary Let I be some nonempty set. Let us assume given a family (E;, T;)ier of
topological spaces. Let T be the product topology on F = [[..; Ei. Let (D,Tp) be a topological
space. Then f: D — F is continuous if and only if p;o f is continuous from (D,Tp) to (E;, TE,)
for alli e I, where p; is the canonical surjection on E; for alli e I.

Proof. We simply applied the fundamental property of initial topologies. O

2.2.18 Remarks (a) The boz topology on the cartesian product [ [,.; X; is the smallest topology
containing all possible cartesian products of open sets U; — X;, i € I. The box topology is strictly
finer than the product topology when the index set is infinite and infintely many of the X; carry
a topology strictly finer than the indiscrete topology. Of course, the box and product topologies
coincide otherwise, in particular when the product is finite.

(b) Since the product topology is the coarsest topology which makes the canonical projections
continuous, it is the preferred and default one on cartesian products.

The metric topology
2.2.19 Definition Let X be a set. A function d : X x X — Ryq is a distance or metric on X
when:
(M1) For all z,y € X the relation d(z,y) = 0 holds true if and only if z = y.
(M2) The map d is symmetric that is one has d(z,y) = d(y,x) for all z,y € X.
(M3) For all x,y, z € X the triangle inequality d(x,y) < d(x, z) + d(z,y) is satisfied.

If instead of [[M1)| the axiom [[M1)'] below is fulfilled while [[M2)] and [[M3)] are still valid, then d

is called a pseudometric on X.

(M1)" For all x € X the equality d(z,x) = 0 holds true.

A pair (X, d) is a metric space when X is a set and d a distance on X. If d is only a pseudometric
on X, one calls the pair (X, d) a pseudometric space.

14
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The following is often useful.

2.2.20 Lemma Let (X,d) be a pseudometric space. Let x,y,z € X. Then
|d(l‘7y) - d(l‘, Z)‘ < d(yv Z) .

Proof. Since d(z,y) < d(z,z) + d(z,y) we have d(z,y) — d(z,2z) < d(z,y) = d(y,z). Since
d(z,z) < d(x,y) + d(y, z) we have d(z, z) — d(z,y) < d(y, z). Hence the claim holds. O

2.2.21 Definition Let (X,d) be a pseudometric space. Let z € E and r € R~g. The open ball
with center x and radius r in (X, d) is the set

B(x,r) =B, (z) ={ye X |d(z,y) <r}.

The closed ball with center x and radius r is defined by

Blo,r) = By(x) = {y e X | d(z,y) <7} .

2.2.22 Definition Let (X, d) be a pseudometric space. The metric topology on X induced by
d is the smallest topology containing all the open balls of X.

2.2.23 Theorem Let (X,d) be a pseudometric space. The set of all open balls on X is a basis
for the metric topology on X induced by d.

Proof. 1t is enough to show that the set of all open balls is a topological basis. By definition,
X = U,ex B(z,1). Now, let us be given B(z,r,) and B(y,ry) for some z,y € X and r,,r, > 0.
If the intersection of these two balls is empty, we are done; let us assume that there exists
z € B(x,72) nB(y,ry). Let r be the smallest of r, — d(x,2) and ry — d(y, 2). Let w e B(z,7).
Then

d(z,w) < d(z,z) +d(z,w) <d(z,z) + 1y —d(z,2) =1y |

so w € B(x,7,). Similarly, w € B(y,r,). Hence, B(z,7) < B(z,r,) n B(y,r,) as desired. O

The following result shows that metric topologies are minimal in the sense of making the distance
functions continuous.

2.2.24 Proposition Let (X, d) be a pseudometric space. For all x € X, the function
dy : X > Rsp, y—d(z,y)

is continuous on X for the metric topology. Moreover, the metric topology is the smallest topology
such that all the functions d,, x € X are continuous.

Proof. Fix x € X. To verify continuity of the maps d, it is sufficient to show that the preimages
of [0,7) and (r,0) by d, are open in the metric topology of X, where r > 0 is arbitrary. Indeed,
these intervals form a subbasis for the topology of [0, 00) which we assume to carry the subspace
topology induced by the order topology on R. Let 7 > 0 be given. Then d,'([0,7)) = B(z,r)
by definition, so it is open. Now, let y € X such that d(z,y) > r. Let g, = d(z,y) —r > 0. If
d(w,y) < oy for some w € X, then d(z,y) — d(w,y) < d(z,w), so d(xz,w) > r. Hence

B(y, py) < d;l((r, o)) forallye d;l((r, 0)) .
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Therefore, d;!((r,0)) is open.

Finally, since d;'([0,7)) = B(z,r) for all z € X and r > 0 the minimal topology making all the
maps d, continuous must indeed contain the metric topology as desired, and our proposition is
proven. O

2.2.25 Remark The metric topology is the default topology on a pseudometric space.

2.2.26 There are more examples of continuous functions between metric spaces. More precisely,
a natural category for metric spaces consists of metric spaces and Lipschitz maps as arrows,
defined as follows.

2.2.27 Definition Let (X,dx), (Y,dy) be pseudometric spaces. A function f : X — Y for
which there exists an L > 0 such that

dy (f(z), f(y)) < Ldx(z,y) forallz,yeX
is called Lipschitz.

2.2.28 Definition Let (X, dx), (Y,dy) be pseudometric spaces. Let f: X — Y be a Lipschitz
function. Then the Lipschitz constant of f is defined as

Lip(f) = sup { W

A Lipschitz function with Lipschitz constant L < 1 is called a metric map. If its Lipschitz
constant is < 1, then the Lipschitz function is called a contraction.

z,y € X, d(x,y) # O} .

2.2.29 Examples (a) A constant map f : X — Y between pseudometric spaces is Lipschitz
with Lipschitz constant 0. If both X and Y are metric spaces and f : X — Y is Lipschitz, then
Lip(f) = 0 if and only if f is constant.

(b) The identity map idy : X — X on a pseudometric space (X, d) is Lipschitz. If d is not the
zero pseudometric on X, then Lip(idx) = 0.

2.2.30 Proposition Let (X,dx), (Y,dy) be pseudometric spaces. If f : X —Y is a Lipschitz
function, then it is continuous.

Proof. Let L be the Lipschitz constant for f. Let y € Y and € > 0. Let x € f~1(B(y,¢)). Put
0p = % and observe that ¢, > 0. Then, for z € B(z, d,),

dy (f(2),y) < dy (f(2), f(2)) + dy(f(z),y) < de(z z) +dy(f(z),y) <
<e—dy(f(x),y) +dy(f(2),y) =

Hence f~!(B(y,¢)) is open and f is continuous. O

2.2.31 Proposition and Definition Pseudometric spaces as objects together with metric maps
between them form a category PMet which is called the category of pseudometric spaces. Chang-
ing the morphism class to Lipschitz maps between pseudometric spaces gives another category
which we denote PMetLip and call the category of pseudometric spaces and Lipschitz functions.
Metric spaces together with metric or Lipschitz maps between them form full subcategories Met
and MetLip of PMet and PMetLip, respectively. They are called the category of metric spaces
respectively the category of metric spaces and Lipschitz functions.
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Proof. The claim immediately follows from the observation that the identity map on a pseudo-
metric space is metric and that the composition of two metric respectively Lipschitz maps is
again metric respectively Lipschitz. O

2.2.32 Remark Using metric or Lipschitz maps as morphisms for categories of metric or pseu-
dometric spaces is natural. Other, more general type of morphisms, would be uniform continuous
maps, which are discussed in later sections.

Co-Finite Topologies

A potential source for counter-examples, the family of cofinite topologies is easily defined:
2.2.33 Proposition Let E be a set. Let:

Teof (B) ={J} u{U < E : CgU is finite }.
Then Teot(E) is a topology on E.

Proof. By definition, ¢ € Teof(F). Moreover, CgE = ¢ which is finite, so F € Teof(F). Let
UV €Tt (E). U or Vis empty then UnV = @ soUnV € Teoe(E). Otherwise, Cg(UnV) =
CpU u CV which is finite, since by definition CpU and CgV are finite. Hence U NV € T (E).
Last, let U < Teof(E). Again, if U = {F} then (JU = & € Teor(E). Let us now assume that U

contains at least one nonempty set V. Then:
Ce|Ju = ){CelU : Uecl} = CpV.

Since CgV is finite by definition, so is | JU, which is therefore in Tor(E). This completes our
proof. O

The one-point compactification of N

Limits of sequences is a central tool in topology and this section introduces the natural topology
for this concept. The general notion of limit is the subject of the next chapter.

2.2.34 Definition Let o0 be some symbol not found in N. We define N to be N u {o0}.
2.2.35 Proposition The set:

Ty ={UcN:(UcN)v (0eUAaCnU is finite)}
is a topology on N.

Proof. By definition, & < N so (J € Tg. Moreover CNN = (J which has cardinal 0 so N € Tg.
Let U,V € Tg. If either U or V is a subset of N then U n V' is a subset of Nso U nV € Tg.
Othwiwse, 0 € U n V. Yet Cx(U n V) = CxU u CxV which is finite as a finite union of finite
sets. Hence U NV € T again.

Last, assume that & < Tg. Of course, oo € |JU if and only if oo € U for some U € U. So,
if oo ¢ (JU then | JU € Ty by definition. If, on the other hand, co € [ JU, then there exists
U € U with CxU finite. Now, CgJU = [({C§V : V € U} < CxU so it is finite, and thus again
Uu € ‘IN' O]
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2.3. Separation properties

2.3.1 The general definition of a topology allows for examples where elements of a topological
space, seen as a set, can not be distinguished from each other by open sets (for instance if
the topology is indiscrete). When points can be topologically differentiated, a topology is in
some sense separated. The standard separation axioms allow to subsume topological spaces with
certain separability properties in particular classes. One then studies the properties of these
clases, often with a view to particular applications, and attempts to create counter examples,
meaning examples not satsifying the corresponding separation axioms. The most important
separability property goes back to the founder of set-theoretic topology, Felix Hausdorff, who
introduced it in 1914. The first full presentation of the separation axioms as we know them today
appeared in the classic book Topologie by |Alexandroff and Hopf (1965) under their German name
Trennungsaziome.

Let us note that the literature on separation axioms is not uniform when it comes to the axioms
(T3) |to[(T6) |below, so one needs to always check which convention an author follows. Here,
we follow the convention by (Steen and Seebach| [1995| Part I, Chap. 2) which coincides with the
one of

2.3.2 Definition (The Separation Axioms) Recall that two subsets A, B of a topological
space (X,7) are called disjoint if An B = J. The two sets are called separated if An B =
An B = . The topological space (X,7) now is said to be

(TO) or Kolmogorov if for each pair of distinct points z,y € X there is an open U < X such
that x € U and y ¢ U holds true, or y e U and = ¢ U,

(T1) or Fréchet if for each pair of distinct points x,y € X there is an open U < X such that
rzeUandy¢ U,

(T2) or Hausdorff if for each pair of distinct points z,y € X there exist disjoint open sets
U,V < X such that x e U and y € V,

) or Uryson or completely Hausdorff if for each pair of distinct points x,y € X there exist
distinct closed neigborhoods U of x and V' of y,

(T3) if for each point z € X and closed subset A — X with x ¢ A there exist disjoint open sets
U,V < X such that e U and A c V,

) if for each point x € X and closed subset A ¢ X with x ¢ A there exists a continuous
function f: X — R such that f(z) =0 and f(A) = {1},

(T4) if for each pair of closed disjoint subsets A, B © X there exist disjoint open sets U,V < X
such that Ac U and Bc V,

(T5) if for each pair of separated subsets A, B < X there exist disjoint open sets U,V < X
such that Ac U and Bc V,

(T6) if for each pair of disjoint closed subsets A, B ¢ X there exists a continuous function
f:X — R such that A = f71(0) and B = f~1(0).
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A Hausdorff space will be called regular if it fulfills| TB? F completely regular, if it satisfies|(T31)},
and normal if[(T4) |holds true. Finally we call a Hausdorff space completely normal if it is[(T5
| and perfectly normal if it is[(T6) |

2.4. Filters and convergence

Filters and ultrafilters

2.4.1 Definition Let X be a set. A subset F of the powerset P(X) is called a filter on X if it
satisfies the following axioms:

(Fill) The empty set ¢J is not an element of F.

(Fil2) The set X is an element of .

(Fil3) If A e F and if B € P(X) satisfies A < B, then Be J.

(Fil4) If Ae F and B € ¥, then the intersection A n B is an element of F as well.

If 1 and F5 are two filters on X such that F; < F, then one calls F; a subfilter of Fy or says that
Fo is finer than F1. Sometimes one expresses this by saying that Fo refines F1. Filters maximal
with respect to set inclusion are called witrafilters. A filter JF is called free if (46 A = &
otherwise it is called fized.

2.4.2 Examples (a) For every set X, the set {X} is a filter. It is the smallest of all filters on
X.

(b) Given an element z € X the set ¥, := {A € P(X) | x € A} is an ultrafilter on X. More
generally, if Y < X is a non-empty subset, then Fy := {A € P(X) | Y < A} is a filter on X. It
is an ultrafilter if and only if Y has exactly one element.

(c) If (X, 7) is a topological space and x € X an element, then the neigborhood filter U, := {V €
P(X)| U eT: zeU c V} is a filter contained in F,. The filters U, and F, coincide if and

only if x is an isolated point.

(d) Now consider the reals and let F = {A € P(R) | 3e > 0: [0,e) = A}. Then F is a filter on R
which is properly contained in the ultrafilter Fy and which properly contains the neighborhood
filter Uy (where R carries the standard topology).

2.4.3 Proposition Let A < P(X) be a non-empty set of subset of X which has the finite
intersection property that is that A1n...N A, is non-empty for alln € N* and all A4, ..., A, € A.
Then there is an ultrafilter F containing A.

Proof. Let P be the set of all J € P(X) having the finite intersection property and containing
A. Then P is non-empty, as it contains at least A, and is ordered by set inclusion. If C < P
is a chain, then M := Uaecﬂ contains A and fulfills the finite intersection property. To verify
the latter let Y7,...,Y;,, € M. Then there exist J1,...,d, € C such that Y; € J; for: = 1,...,n.
Hence all Y; lie in the maximum J,, of the sets J1,...,d,. But J, has the finite intersection
property, hence Y1 n...nY, # . So M is an upper bound of the chain C'. By Zorn’s Lemma,
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P has a maximal element F. It contains A and has the finite intersection property. Moreover, if
A e F and B € P(X) contains A as a subset, then F U {B} also satisfies the finite intersection
property, hence by maximality of F one concludes B € F. Again by maximality F has to be an
ultrafilter. O

2.4.4 Corollary Fwvery filter on X is contained in an ultrafilter.

Proof. This follows from the preceding proposition since a filter has the finite intersection prop-
erty. O

2.4.5 Theorem Let F be a filter on a set X. Then the following are equivalent:
(i)  F is an ultrafilter.

(ii) If A is a subset of X and A has non-empty intersection with every element of F, then A € F.
(iii) For all A c X either Ae F or X\AeF.

Convergence of filters

2.4.6 Definition

2.5. Nets

Directed sets

Let us first recall that by a preordered set one understands a set P together with a binary relation
< which is reflexive and transitive, see 77.

2.5.1 Definition (Directed sets) By a directed set one understands a preordered set (P, <)
such that the binary relation < is directed which means that

(Dir) for all z,y € D there exists an element z € D with z < z and y < z.

2.5.2 Remark The property that (P, <) is directed is the same as saying that any two elements
of the preordered set P have an upper bound.

2.6. Compactness

Quasi-compact topological spaces

2.6.1 Before we come to defining quasi-compactness let us recall some relevant notation. By a
cover (or covering) of a set X one understands a family U = (U;);es of subsets U; < X such that
X < U;ey Us- This terminology also holds for a subset Y < X. That is a family U = (U;)ser of
subsets U; < X is called a cover of Y if Y < | J,.; U;s. A subcover of a cover U = (U;)ier of Y or

el
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shortly a subcover of U then is a subfamily (U;);e; which also covers Y which means that J < I
and Y < | J,c; Usi. If J is finite, one calls the subcover (U;)ies a finite subcover. If (X,7) is a
topological space and all elements U; of a cover U = (U;);er of some Y < X are open sets, the
cover is called an open cover of Y.

2.6.2 Proposition Let be a topological spaces (X,T). Then the following are equivalent:
(i) Ewvery open cover of X has a finite subcover.

(i) For every family (Ai)ier of closed subset A; < X such that (,c; Ai = & there exist finitely
many elements A;,,..., A;, such that A;y n...nA;, = .

(iii) Ewvery filter on X has an accummulation point.

(iv) Ewvery ultrafilter on X converges.

Proof. Assume that |(1)| holds true and let (A;);er be a family of closed subset A; < X such that
(Nies Ai = . Put U; := X\A, for all i € I. Then (U;)ier is an open covering of X, hence by
assumption there exist ¢1,...,4, € I such that X = U;, v ... u U;,. By de Morgan’s laws the
relation 4;, n...n A; = & the follows, hence follows.

Next assume and let F be a filter on X. _Then Ain...n A, # & for all n E_N* and
Ai,..., Ay € F, since J is a filter. Hence () o5 A # & by . Every element of (1) 4.5 A now is
an accummulation point of &, so follows.

By 77, implies

Finally assume that every ultrafilter on X converges, and let U = (U;);e; be an open cover of X.
Assume that ¢/ has no finite subcover. For each finite subset J < I the set B; := X\ |J,c; Ui
then is non-empty, hence B := {By € P(X) | J < I & #J < o} is a filter base. Let F be
an ultrafilter containing B. By assumption F converges to some x € X. Since U is an open
covering of X there is some U; with x € U;, hence U; since F converges to z. On the other hand
X\U; € B < F by construction. This is a contradiction, so ¢ must have a finite subcover. O

2.6.3 Definition (Bourbaki (1998])[1.8§9.1. )]A topological space (X, T) is called quasi-compact,
if every filter on X has an accummulation point.

2.6.4 Theorem (Alexander Subbase Theorem) Let (X,T) be a topological space, and 8§ an
adequate subbase of the topology that is a subbase of T such that X = |Jg.gS. If every cover of
X by elements of 8 has a finite subcover, the topological space (X,T) is quasi-compact.

Compact topological spaces
2.7. The compact-open topology on function spaces

Let X and Y be topological spaces. We denote the set of all functions from Y to X by XY . This
is the same thing as the direct product [ [y, X of X over Y. The space of continuous functions
C(Y, X) sits in XY so we can give C(Y, X) the product topology induced by XY . This is the
topology of pointwise convergence and will not be useful for studying most function spaces.
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We will instead be interested in the compact open topology which is the topology of uniform
convergence on compact sets.

2.7.1 Definition Let X and Y be topological spaces. The compact open topology on C(Y, X)
is the topology with subbasis given by the sets V(K,U) = {f € C(Y, X)|f(K) c U} for K ¢ Y
compact and U < X open.

2.7.2 Definition A topology T on C(Y, X) is called admissable if the evaluation map e :
C(Y,X)xY — X, (f,y) — f(y) is continuous.

2.7.3 Proposition The compact open topology is coarser than any admissable topology on C(Y, X).

Proof. Let T be an admissable topology on C(Y, X) so that the evaluation map e : C(Y, X)xY —
X is continuous. Let K < Y be compact, U < X be open and f € T(K,U). We have to find
V e O such that f € V < T(K,U). Let k € K. Since e is continuous and U is an open
neighborhood of f(z), then there are open sets W < Y and Vj, € Co(Y, X) such that k € Wy,
f(k) € Vi amd e(Vy x W) < U. Since K is compact, there are ki, ko, ...,k; € K such that
K c Uﬁzl Wi,. Put V := 221 Vi, so that f € V and V is open in O. Now take g € V and let
k e K. Choose i such that k € W, and observe that g € W}, so that

g(k) =e(g, k) ee(Vi, x W, cU
Hense g e T'(K,U) O
2.7.4 Theorem IfY is locally compact, then the compact open topology on C(Y, X) is admiss-
able, and it is the coarsets topology on C(Y, X) with that property.
Proof. We have to show that

e:CY,X)xY — X(f,y) — f(y)

is continuous. Since sets of the form T'(K,U) form a subbasis for the compact open topology,
it suffices to show that for an open neighborhood W < X of some e(f,y), there is compact
K c Y, open U c X and open V < Y such that e(T'(K,U) x V) ¢ W with f e T(K,U) and
y € V. By assumption, and since f is continuous, there is an open neighborhood W of y such
that f(W) < W. By local compactness, there is an open neighborhood V' < Y of Y such that

yeV cVcWandV is compact. If we put K :=V and U = W, then e(T(K,U) x V) c W
since for f' € T(K,U) and y' € V, we have e(f",y) = f'(y) c W. O

Let X,Y, Z be topological spaces. As sets, it is always true that ZX*Y ~ Z Y¥ Via the maps

: 2 S 2 f s (e (y— f2,y))

and
V27 - 25 g o ((2y) - g(@)(y)

2.7.5 Theorem (The exponential law) IfY is locally compact, then
B(C(X x Y), Z) < B(X,C(Y, 2))

and
U(C(X,CY,2))) c(C(X xY),2Z)
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Proof. For f e C(X xY,Z) and x € X, we have to show that ®(f)(x) € C(Y,Z) and ®(f) €
C(X,C(Y,2)). ®(f)(z)(y) = foix(y) = f(xz,y). Consider T(K,U) for K < Y compact and
U < X open. We need ot prove that the preimage ®(f)~!(T(K,U)) is open in X. Let = €
®(f)"NT(K,U)) so that f(z, e T(K,U). Hence for all y € K, we have f(x,y) € U. By the
continuity of f, there are open neighborhoods W, of  and Vj, of y such that f(W, x V) c U.
Since K us compact, there are open sets y1,y2,...yx € Y such that K <V, uV,, u...UV,,.
Put W =W, n Wy, n...n W, so that W is a neighborhood of z and ®(f)(W) < T(K,U).

Now we need to show for g € C(X,C(Y, 7)) that ¥(g) € C(X x Y, Z). Let g : X x C(Y,Z) be
continuous and assume that U < Z be open. We have to show that ¥(g)~!(U) is open. Take
(z,y) € ¥(g)~Y(U). Since g is continuous, there is an open neighborhood W of y such that
g(z)(W) < U. Since Y is locally compact, there is an open V < Y such that ye Ve Ve W
with V' compact. Hence g(z)(V) < g(x)(V) < U. Thus g(x) € T(K,U) so there is an open
neighborhood O = X of x such that g(O) < T(V,U). Therefore

()0 x V)< g(O)(V) = g(O)(V)cU

2.7.6 Lemma The sets (UMK = T(K, T(L,U)) with K € X and L <Y compact and U < Z
open form a subbasis for the compact open topology on C(X,C(Y, Z)).

Proof. Let I be an index set W; < C(Y, Z) be open and K < X be compact.

T<K7UWi> = U U U ﬂT(KiNWiz)
I neNt K X.-.XKnCIgL (31 eeyin )€I™ I=1

Kiu...0K,=

K;=K;Vi

Suppose J is a finite set. then T (K, MNjes Wj) = (Njes T(K, Wj). Sets of the form T(L, U) with

L c'Y compact and U < Z open form a subbasis of C(Y, Z), so if W < C(Y, Z) is open, we have
W =Uies mjeji T(Lz'j, Ul-j) so that

n
T(K, W)= | U M () T(Ki, T(Lig, Uiy)
neN+ Ky x..x Ky K™ (iy,....in)eJn I=1 j€J;
Kiu.0oK,=K
K;=K;Vi

l

2.7.7 Theorem Let X,Y, Z be topological spaces with X andY Hausdorff andY locally compact.
Then the natural isomorphism

:C(X xY,Z)—- C(X,C(Y,2))
is @ homeomorphism.

Proof. Let f e @(X xY,Z) and let W € C(X,C(Y,Z)) be an open neighborhood of ®(f). By
, there is an open U < Z and compact subsets L < Y and K < X such that phi(f) €
T(K, T(L,U))c W. T(K x L,U) is open in C(X x Y, Z) and note that f € T(K x L,U) since
for (,y) € K x L, ®(f)(z) € T(L,U) and f(z,y) = ®(f)(z)(y) € U.

Assume that g € T(K x L,U). The ®(g)(x)(y) = g(z,y) =€ U so ®(g)(z) € T(L,U) so

®(g) e T(K,T(L,U)), hence @ is continuous.
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|.3. Measure and Integration theory

3.1. The category of measurable spaces

The natural domains of measures are the so-called o-algebras. Similarly to a topology, a o-
algebra is a particular kind of set of subsets of some given ambient space ). By definition, a
o-algebra contains the ambient space and is stable under taking complements and countable
unions. To construct a measure one usually starts with defining it on a generating set of the
o-algebra which fulfills some weaker properties like for example is only a ring on 2. In this
section we introduce algebras and c-algebras on sets and the related concepts of rings on sets
and Dynkin systems. Crucial is the observation that together with their structure preserving
maps, the measurable funtions, sets endowed with o-algebras form a category, the category of
measurable spaces.

o-Algebras

3.1.1 Definition Let € be a set. A ring on 2 is a set R of subset of {2 or in other words an
element R € P(P(2)) which satisfies the following axioms:

(Rngl) g eR.

(Rng2) For all A, B € R the complement A\B belongs to R.

(Rng3) For all A, B € R the union A U B lies R.

If in addition

(Rngd) Qe A,

then one calls R an algebra on €.

3.1.2 Proposition Let € be a set and A a set of subsets of Q. Then A is an algebra on ) if
and only if A has following properties:

(Algl) Qe A.

(Alg2) For all A€ A the complement CA = Q\A belongs to A.

n

(Alg3) For each finite sequence (Ay)}_, of elements of A the union A = J Ay belongs to A.
k=1
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Proof. Assume that A is an algebra on 2. Then [(Algl)] holds true by definition, and [(Alg2)] by
[(Rng2)| and |(Algl)l Property |(Alg3)| follows from [(Rng3)| by induction.

Conversely, assume now that A satisfies |(Algl)| to [(Alg3)l Properties |(Rng3)| and |(Rng4)| are
immediate. Axiom |(Rngl)|follows by [(Alg2)|since & = (2. Finally, |(Rng2)|is true since A\B can

be written as A n (B and since A is stable under finite intersections by de Morgan’s laws. [

3.1.3 Remark Obviously, the set of rings on a set €2, the set of algebras on € and the later
defined set of g-algebras on {2 are all ordered by set-theoretic inclusion. Therefore, when talking
about a “smaller” ring or a “largest” o-algebra we always implicitely mean in regard to set-
theoretic inclusion as underlying order relation.

3.1.4 Examples (a) Trivial examples of rings and algebras on a set € are the power set P(2)
and the set {¢F,Q}. These are the largest and the smallest ring on €2, respectively.

(b) Of fundamental importance for Lebesgue integration theory is the ring on euclidean space
R"™ generated by the n-dimensional right half-open intervals. Let us explain the construction
of that ring in some detail. To be precise we mention that the dimension n is assumed to be
positive. Now define for any pair of elements a = (ay,...,a,) € R" and b = (by,...,b,) € R™ the
right half-open interval [a, b) by

[a,0):={z = (1,...,2n) eR" | Vie {1,...,n} 1 a; < x; < b;} .

Denote by J" the set of right half-open intervals in R™. Since for a, b, c,d € R™ the intersection
[a,b) N [¢,d) coincides with

{zeR"|Vie{l,...,n}: max{a;, b} < x; < min{b;,d;}} ,

the set J™ ist stable under finite intersections. The empty set is an element of J” since for example
for a € R"™ and b = a the relation [a,a) = ¢J holds true. But J" is not a ring since the union of
finitely many right half-open intervals is in general not a right half-open interval. But one can
minimally enlarge J" to obtain a ring. Define R™ as the space of all subsets of R™ which can be
written as the finite union of elements of J*. Obviously, J* < R™ which entails that &J € R™.
Hence holds for R™. By definition, the union A U B of two elements A, B € R" lies in
R™ which means that is fulfilled. It remains to show To this end we proceed in
steps and first prove that for elements A, B € R™ the intersection A N B is also an element of
R™. By assumption, one can represent the two sets in the form A = Uf;l I, and B = Uézl J;

where k,l € NT and I,...,I;, Jq,...,J; € 7. The distributivity law for sets now entails
k l E o1
AnB=JLn =L~
i=1 j=1 i=1j=1

Since I; n Jj € J*, the intersection A n B therefore lies in R". By induction one concludes that
R™ is stable under finite intersections. In the next step we show that I\J € R™ for all right
half-open intervals I = [a,b) and J = [¢,d). To avoid trivial cases we assume a < b and ¢ < d
that is a; < b; and ¢; < d; for all i € {1,...,n}. Note that then

[ai,bi] if b; <c¢ ord; <ay;,

[ai,ci) U [dl,bl) if c < bz and a; < dl .

[as, b))\ [cs, di) = {
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Hence [a;, b;)\ [¢;, d;) € RE. By the formula

[a,0)\ [¢,d) = ] [ [ai, b)\ [ci, i)

i=1

and since the cartesian product distributes over union, the complement [a,b)\ [¢,d) coincides
with the union of finitely many right half-open intervals, hence is in R™. In the final step we
consider the complement A\B for A, B € R™. Representing A, B as before one obtains by de
Morgan’s laws
k l l k Il k
avs=JYJs=-N (U =Ny .
i=1 j=1 j=1 "i=1 j=li=1

1=

Since R" is stable under finite unions and finite intersections the complement A\B must be in
R™ again. This proves that R™ is a ring on R" as claimed. By construction, R™ is the smallest
ring on R™ containing the set J” of right half-open intervals.

3.1.5 Definition A ring R on a set (2 is called a o-ring on §2 if it satisfies the following condition:

(cRng3) For each sequence (Ag)gen of elements of R the union A = | J Ay belongs to R.
keN

In case a set A of subsets of 2 is both a o-ring and an algebra on €2, then one calls A a o-
algebra (on ). A set Q endowed with a o-algebra A on it is referred to as a measurable space.
The elements of the o-algebra A are termed the measurable subsets of 2. We will often denote
measurable spaces as pairs (2,A) or (E,9), where the first component always denotes the
underlying set and the second component the o-algebra on it.

3.1.6 Remark It is immediate by Proposition that a set A of subsets of some () is a
o-algebra on € if and only if A satisfies the following conditions:

(ocAlgl) Qe A.
(ocAlg2) For all A € A the complement CA = Q\A belongs to A.

(oAlg3) For each sequence (Ag)ken of elements of A the union A = J Ay belongs to A.
keN

This is the standard list of axioms defining a o-algebra and we will use it from now on.

3.1.7 Proposition If A is a o-algebra on ), then the intersection of countably many measurable
sets is also measurable.

Proof. This follows immediately from the axioms and the set-theoretic de Morgan’s laws. O

3.1.8 Examples (a) Let  be any set. Then the power set of ) is a o-algebra. The set {¢F, 2}
is also a o-algebra. These are the largest and smallest o-algebra on 2, respectively.

(b) Let © be any set. Let A be the set of all sets A < 2 such that A or Q\A is a countable set.
Then A is a o-algebra.
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(c) Let E be a set, (2, A) a measurable space, and f : E —  a map. Then the set
fTHA) :={MePE)|IAcA: M= f1A)}

is a o-algebra on E called the preimage of A under f.

The following two results are extremely useful when constructing examples.

3.1.9 Proposition Let © be a non-empty set of algebras on a set Q). Then the intersection

As= [ A={AecPQ)|Ac A forall Ac &}
Ae6

is an algebra on Q. If each of the elements A € & is a o-algebra, then Ag is so, too.

Proof. Assume first that each A € & is an algebra on €. Obviously, 2 € Ag because 2 € A for

all A € &. Similarly, if A € Ag, then A € A, hence CA € A for all A € &. Therefore, CA lies
in the intersection Ag = () A. Now assume that (A;)}_, is a finite sequence of sets belonging
Ae6

n

to Ag, hence to all A € &. Then the union [J Ay is in each of the A € &, hence in Ag. The
k=1

latter argument also works under the condition that every A € & is a g-algebra to verify that

for a sequence (Ag)gen in A(S) the union | J Ay lies in Ag. So the proposition is proved. [
keN

3.1.10 Corollary Let & be a collection of subsets of a set Q). Then there exists a smallest o-
algebra on Q containing €. It is called the o-algebra generated by & and will be denoted by
A(E).

Proof. Let & be the set of all o-algebras on 2 which contain €. The set of all subsets of (2
is certainly a o-algebra, so & # . Let A(E) be the intersection of all o-algebras in the set
S. By the preceding proposition A(€) is a o-algebra. Since every element of & contains &, the

intersection A(€) = [ A contains & as well. By construction, A(€) is the smallest o-algebra
Ae6
with that propery. O

3.1.11 Remark Obviously, given a collection € of subsets of {2 there also exist a smallest ring
and a smallest algebra containing €. They are constructed analogously to the o-algebra case and
are called the ring generated by € and algebra generated by &, respectively. Note that the ring

R™ constructed in Examples m is generated in exactly that sense by the set I of right
half-open ideals in R".

3.1.12 Example Let X be a topological space. The g-algebra generated by the topology on X
is called the Borel o-algebra on X. Its elements are the Borel measurable sets or simply the Borel
sets of X. Obviously, all open and all closed sets of X are Borel measurable, as are all countable
unions of closed sets and countable intersections of open sets. We will denote the Borel o-algebra
on X by Aperel(X) or shortly by Aporel-

3.1.13 Example (a) All intervals including the half-open intervals [a,b) and (a,b] with a < b
are Borel subsets of R.
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(b) The elements of the ring R" constrcuted in Examples [3.1.4][(b) | are Borel measurable subsets
of the euclidean space R"™.

(c) If X is a topological space with the discrete topology, then every subset of X is Borel mea-
surable.

(d) If X is a topological space carrying the indiscrete topology {X, &f}, then the o-algebra of
Borel sets coincides with the topology {X, &}.

Dynkin systems

In measure theory, one often faces the problem to check whether a system of subsets of some
given set is a o-algebra. To address that problem the following concept going back to EUGENE
DYNKIN is often useful.

3.1.14 Definition A system D of subset of a set Q is called a Dynkin system (in Q) if it has
the following properties:

(Dynl) Qe D,
(Dyn2) for all D € D the complement CD = Q\D belongs to D,
(Dyn3) for each sequence (Dj)ren of pairwise disjoint elements of D the union D = [J Dy

keN
belongs to D.

3.1.15 Remark By|(Dynl) and |(Dyn2)| the empty set is contained in every Dynkin system D.
Moreover, [(Dyn3)| then entails that every Dynkin system is stable under finite unions of pairwise
disjoints elements.

3.1.16 Dynkin systems on a set ) are ordered by set-theoretic inclusion. Analogously to the
case of o-algebras one can use this observation to construct the Dynkin system generated by a
collection of subsets of 2.

3.1.17 Proposition Let G be a non-empty set of Dynkin systems on a set Q. Then the inter-
section
De=[]D={DePQ)|DeD forall D e &}
DeS

is a Dynkin system on €.

Proof. The claim follows immediately from the proof of Proposition [3.1.9] O
3.1.18 Corollary Let € be a collection of subsets of a set 2. Then there exists a smallest Dynkin
system on € containing €. It is called the Dynkin system generated by & and will be denoted by
D(E).

Proof. Analogously as in the proof of Corollary[3.1.10|the claim can be derived from the preceding
proposition. O
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3.1.19 Lemma Let D be a Dynkin system on a set Q. Then D is stable with respect to comple-
ments of subsets that means

A\BeD forall A,BeD with Bc A .

Proof. By assumption, CA and B are disjoint and elements of the Dynkin system, hence there
union is also in D. Therefore, by de Morgan’s laws

AB=AnCB=C0CAUB)eD. 0

The next two results are central for the application of Dynkin system in measure theory.

3.1.20 Theorem A Dynkin system D on a set € is a o-algebra if and only if it is stable under
binary intersections which in other words means if and only if for two elements D1, Ds € D the
intersection D1 n Do belongs to D.

Proof. If the Dynkin system D is a g-algebra, then it is obviously stable under finite intersections.
So let us prove the converse and assume that D contains with two elements also their intersection.
Axioms |(cAlgl)| and |(cAlg2)| hold trivially by definition of a Dynkin system. So it remains to
show By assumption on D and Lemma the complement A\B = A\(A n B) lies
again in D whenever A, B € D. Moreover, since A U B can be written as the disjoint union
(A\B) u B, the Dynkin system D therefore is stable under finite unions. Now let (Ag)ren be a
sequence of elements of D. Define a new sequence (A} )ren of elements of D by

k
0:=A0, Ap = Api1\ U A
1=0

Note that by our previous observations the sets A} are all elements of D, indeed. By induction
one checks that

k k
UA; = UAl for all ke N. (3.1.1)
=0 =0

The elements of the sequence (A} )reny are pairwise disjoint by construction, hence the union
Uken AJ is an element of D. Since by ({3.1.1)) the set | oy Ak coincides with | .y A}, the union
of the family (Ag)ken lies again in D. This proves |(cAlg3)l and D is a o-algebra. O

3.1.21 Theorem Assume that € is a set of subsets of ) which contains with each pair of ele-
ments also their intersection. Then the Dynkin system and the o-algebra generated by € coincide
that is

Proof. Since every o-algebra is a Dynkin system and since A(€) contains &, the inclusion D(E) <
A(&) is clear by the minimality assumption of D(€). So it remains to show that A(E) < D(E).
This relation follows if we can verify that D(€) is a o-algebra. Hence by Theorem it
suffices to show that D(E) contains with any two elements also their intersection. To this end
put for D € D(€)

Dp:={AeP(Q)|AnDeD(E}.
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Let us show that Dp is a Dynkin system. Obviously, @ € Dp. If A€ Dp, then CAnD = D\A =
D\(An D) e D(E) by Lemma|3.1.19} Hence CA € Dp. If (Ag)ken is a family of pairwise disjoint
elements of Dp, then |J,ony Ak € Dp since Ay, 0 D € D(E) for all k € N and therefore

(UAk>mD=U(AkmD)eD(8).

keN keN

By assumption on € and because & < D(E) the relation € < Dy holds true for all E € €. Since
D is a Dynkin system, this entails D(€) < Dg for all E € €. Given D € D(&) one concludes
that En D e D(E) for all E € €, hence € < Dp and D(E) < Dp. But that means that D(E) is
stable under binary intersections and the claim is proved. O

Application of this results leads to an important observation about the o-algebra generated by
the right half-open intervals in euclidean space.

3.1.22 Proposition The Dynkin system generated by the set I" of right half-open intervals in
R™ is a o-algebra and coincides with the Borel o-algebra Aporel(R™). More precisely,

"< R < D(I") = A(T") = Aporel(R")
where R™ denotes the ring on R™ generated by J™.

Proof. Obviously " < Aperel(R™). Moreover, J" is stable under finite intersections as shown
in Examples m By Theorem the claim now is proved when we can show that
the Borel o-algebra on R” is generated by J". But that is clear since for all a,b € R™ the open
interval
(a,b):= {Q:ER" | Vie{l,...,n}:a; <m; < bi}

can be written as the union of the countable family ([a — 1, b)) e+ Of elements of J7, and since
the set of all open intervals (a,b) € R™ with a,b € Q™ is a countable basis of the topology of
R™. O

Measurable functions

3.1.23 Definition Let (2, A) and (E,9) be two measurable spaces. A map f: Q — E is
termed measurable if the set f~1(M) is measurable for every measurable set M < E that is if
fH(M) e A for all M e M.

3.1.24 Remark Let (€2, A) be a measurable space. A real or complex valued function f : Q@ — K
with K = R or = C is understood to be measurable if it is measurable when K is equipped with
the Borel o-algebra Apopel (K).

3.1.25 Example Let (2, A) be a measurable space, and let A < Q be a measurable set. Then
the function x4: 2 — R given by the formula

(z) 1 forxe A,
) =
xa 0 forzé¢A,

is measurable since for each Borel set B < R the preimage X;ll(B) is either ¢, A, CA or R,
depending on whether 0,1¢ B, 1e Bbut 0¢ B, 0e B but 1¢ B or 0,1 € B, respectively. The
function x 4 is called the characteristic function of A.
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3.1.26 Theorem and Definition (a) The identity map idg on a measurable space (2, A) is
measurable.

(b) Let (Q1,A1), (Q2,A2) and (3, As) be measurable spaces. Assume that f : Q1 — Qo and
g : Qo — Qs are maps. If f and g are both measurable, so is go f : Q1 — Q3.

(c) Measurable spaces as objects together with measurable maps as morphisms form a category.
It is called the category of measurable spaces and will be denoted by Measble.

Proof. By definition the identity map idq is measurable. Under the assumption that f and g
are measurable let A € A3. Then g~!(A) € Az since g is measurable. Hence f~1(g71(A4)) € A;
since f is measurable. Therefore, the composition g o f is measurable. The claim follows. O

3.1.27 Proposition Let (€, A;) fori = 1,2 be measurable spaces and assume that the o-algebra
As is generated by the set € < As. Then a map f : Q1 — Qo is measurable if and only for all
E € & the preimage f~1(E) is measurable.

Proof. If f is measurable, then f~}(E) € Ay for all E € € by definition of measurability. It
remains to prove the converse. So assume that f~!(E) € A; for all E € . Then the set

M={AeP()|f'(A)ecA}

is a o-algebra since it contains {29 and is stable under complements and countable unions. More-
over, & < M by assumption. Since Ay is generated by &, the relation As < 9N follows and the
claim is proved. 0

3.1.28 Corollary Let (2, A) be a measurable space and f : X — R a function. Then the
following are equivalent:

i) f is measurable with respect to the Borel o-algebra on R.
ii) The preimage f~1(O) of any open subset O = R is measurable.

iii) The preimage f~'(A) of any closed subset A < R is measurable.

v) The preimage f~([a,b]) of any closed interval [a,b] = R with a,b € R is measurable.

(

(

( H

(iv) The preimage f~'((a,b)) of any open interval (a,b) = R with a,b € R is measurable.

( la,b

(vi) The preimage f~1([a, b)) of any right half-open interval [a,b) = R with a,b € R is measurable.
(

vii) The preimage f~((a,b]) of any left half-open interval (a,b] < R with a,b € R is measurable.

Proof. The equivalence of and follows from the preceding proposition since the open
sets generate the Borel g-algebra on R. Likewise and are equivalent because the closed
subsets of R also generate the Borel g-algebra. For the other equivalences it suffices to show that
the sets of open intervals, of closed intervals and of right respectively of left half-open intervals
each generate the Borel g-algebra on R. Since every open set in R is the countable union of
open intervals, this is clear for the set of open intervals. An open interval of the form (a,b) can
be written as the countable union Ule [a + %, b— l], which implies that the closed bounded

n

intervals generate the Borel o-algebra. Similarly, (a,b) = |, [a + %,b) = U (a,b— %],
which entails that the set of right half-open intervals and the set of left half-open intervals each

generate the Borel o-algebra. O
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3.1.29 Definition Let f: X — Y be a mapping between topological spaces. If f is measurable
with respect to the Borel o-algebras on X and Y, respectively, then one calls f Borel measurable
or a Borel function.

3.1.30 Example By Proposition [3.1.27] a continuous function f : X — Y between topological
spaces is Borel measurable.

Categorical constructions

3.1.31 Proposition and Definition Let (2, A;), ¢ € I := {1,2} be two measurable spaces.
Denote by Q1 1 Qo = ;e {(p,7) € (1 0 Qo) x I | peQ} their disjoint union and by Qp x Qg
their cartesian product. Let Ay [[Aa be the o-algebra generated by the collection of disjoint
unions Ay 1 As < Q1 1 Qo and Ay [ [ Az the o-algebra generated by the set of cartesian products
A1 x Ay < Q1 xQo, where in both cases A; runs through the elements of A; for both i € I. Then the
paiﬂs (Ql,fll) H(QQ,AQ) = (Ql (] QQ,Al LI.AQ) and (Ql,fll) H(QQ,AQ) = (Ql X QQ,Al H.AQ)
form the categorical coproduct and product, respectively, of (Q1,A1) and (Q2,A2) within the
category of measurable spaces.

Proof. By construction, (Q1,A1) [ [(Q2,A2) and (1, A1) [ [(Q2,A2) are measurable spaces, so it
remains to show that they fulfill the universal properties of the coproduct and product, respec-
tively. To this end observe first that for ¢ € I we have natural maps

lQ; = Lt :Qi%91|_|927 p'_’(p7i)

and
o, =T 1 x Qo — Q. (p1,p2) — pi -

The injections ¢1 and t2 are measurable by Proposition |3.1.27| and the construction of A; [ [ As.
The projections 7m; and w9 are measurable by definition of A; x As.

Now assume that (F,9) is a measurable space and that there are measurable maps g; : ; — E.
Define g : Q1 1 Qy — E by (p,i) — g(p,i) = gi(p). Then g is measurable by Proposition
since for A; € A; the preimage g~ '(4; x {i}) = g; ' (A;) is measurable. Moreover, g o ¢; = g; for
i € I, and g is the only map with that property. Hence, (Q1,A1) [ ](Q2,A2) together with the
maps t;, 1 € I is the categorical coproduct in the category Measbl.

Finally assume that we are given measurable maps f; : £ — €0;. Define f : E — Q1 x {2 by
e — (fi(e), f2(e)). Since for all A; € A and As € Ay the preimage f~1(A; x Ag) coincides with
the intersection f; LA n fs 1(Ay), the map f is measurable by measurability of the f; and by
Proposition Clearly, m; o f = f; for i € I, and f is the only map having that property.
Altogethr this proves that (21,.A1) [ [(Q2,A2) together with the maps 7;, i € I is the categorical
product in the category Measbl. O

3.1.32 Remarks (a) The unique map g associated to the measurable maps g; : Q; —» E,i = 1,2
in the universal property of the coproduct will sometimes be denoted by [g1, g2] : 21 L Qo — E.
The unique map f associated to the measurable maps f; : £ — £;, ¢ = 1,2 in the universal
property of the product will often be written as a pair (f1, f2) or sometimes as {f1, f2).
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(b) Assume to be given two measurable functions f; : (Q;,A;) — (E;, ;) with i = 1,2. By the
universal properties of the product and coproduct there exist uniquely determined measurable
functions f1 U fo: Q1 LU Qo — Fp LU Ey and f1 X fo: Q1 X Q9 — E7 X Ey making the following
diagrams for ¢ = 1,2 commute:

(@ PN o PN o O x Qp 2y
le lflUfZ fi szl lfi
EiTEll_IEQ EleQTE)Ei

These diagrams can be understood as functoriality relations for the coproduct and product in
Measbl, respectively.

(c) If X and Y are topological spaces, the product o-algebra Apeel(X x Y) of the product
topological space X x Y coincides with the product o-algebra of the Borel o-algebras Apore1(X)
and Aperel(Y) since the product sets U x V' form a basis of the topology on X x Y and a
generating system of the product o-algebra Aporel(X) [ [ ABorel(Y) when U and V run through
the open sets of X and Y, respectively.

Algebras of real and complex valued measurable functions

3.1.33 Proposition Let K be the field of real or complex numbers and (2, A) a measurable
space. Endow K with the Borel o-algebra. Then the set M(Q2, K) of measurable K-valued functions
becomes an algebra over K with pointwise addition, poitwise scalar multiplication and pointwise
multiplication of functions as structure operations.

Proof. 1t suffices to show that M(£2,K) is a subalgebra of the algebra F(Q,K) of K-valued
functions on 2. More precisely, we therefore only need to show that for f, fi, fo € M(2,KK) and
A € K the functions f; + fo, Af and f; - fo are measurable again. To this end recall that the
functions

a: KxK->K, (z,y)—z+y,
pw: KxK—-K, (z,y)—x- -y, and
wr: K=K, z— Ay

are continuous, hence Borel measurable. Since the map f is measurable by assumption and
(f1,f2) : Q> K x K, p— (fi(p), f2(p)) by the universal property of the product in Measbl, the
compositions Af = pyo f, fi + fo = ao (f1, f2) and f1 - fo = po (f1, f2) are all measurable. [

3.1.34 Proposition Let f: Q — C be a function on a measurable space (2, A). Then the
function f is measurable if and only if the functions Re(f) and Im(f) are measurable.

Proof. Since the maps fMe : C =~ R? — R and Jm : C = R? — R are the projections onto the first
and second coordinate, respectively, and since f can be identified with the pair (JRe(f), Im(f)),
the claim is essentially a consequence of the universal property of the product in the category
Measbl. O
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3.1.35 Proposition Let f: Q — C be a measurable function on the measurable space (2, A).
Then the function |f| is measurable, and there is a measurable function a: Q@ — C having image
in S! such that f = af].

Proof. Since the absolut value | - |: C — R is continuous, hence Borel measurable, the com-
position |f| is measurable by assumption on f. Let E = {p € Q| f(p) = 0}. Then the set E is
the inverse image of a closed subset, and so measurable. We can define a continuous function
@: C\{0} — C by the formula ¢(z) = z/|z|. By measurability of ¢ it follows from Proposi-
tion that the function a::  — C defined by the formula o = ¢ o (f + xg) is measurable.
The formulae |a(p)| =1 for all p e Q and f = a|f| are immediate by construction. O

Measurable numerical functions

3.1.36 Definition Let (a,) be a sequence of real numbers. Then we define

limsup,,_,,a, = limsup,,_,, {an, Gni1, Ani2, .-}
and

liminf, ,pa, = liminf, o {an, ani1, Gni2, .-}

We can pass from results about lim sup to results about liminf, or conversely, by the observa-
tion
limsup,,_,,a, = —liminf, . (—ay)

It will occasionally be convenient to us to allow o0 and —oo as values of limits and functions.
This is a safe enough option provided we do not attempt to do arithmetic with these symbols;
for example, expressions such as ‘c0 — 00’ are completely meaningless.

However, we can form ‘intervals’
[a, 0] = [a,00) U {0} [00,b] = (o0, b] U {0}
and so on. These intervals are topological spaces. We can also allow ourselves the inequality
—0<a<w

for all a € R. The standard result about limsup and lim inf can now be expressed quite simply;
although a number of special cases need to be examined in the proof.

3.1.37 Theorem Let (ay,) be a real-valued sequence. Then the limits
liminf,_,a, € [—o0, ) lim sup,,_, . an, € (—00, 0]
exist and satisfy the inequality
liminf,,,ay, < limsup,,_,,an

Further, the equality
liminf,,,pa, = a = limsup,,_,,an

holds precisely when the sequence (ay) converges to the real number a. proof to be filled in!
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Note that the number a in the above result must be finite.

3.1.38 Proposition Let 2 be a measurable space, and let f: Q — [00,00] be any map. Suppose
that the inverse image f~((c, 0]) is measurable for every point o € R. Then the function f is
measurable.

Proof. Let
M = {E c [~o0,0] | f}[E] is measurable }

By proposition 7?7 the set M is a o-algebra. Choose points @ € R and a,, < « such that
lim,, o @, = . Since the set (a,, 0] is measurable by hypothesis, and

[_007 a) = U [_007 an] = U [—OO, OO]\(O%? OO]

n=1 n=1

it follows that [—o0, ) € 2. Hence

(aaﬂ) = [_OOHB) N (a,OO] €2

for every point «, 5 € R. Since every open set in [—o0, 0] is a countable union of such open
intervals, the collection M contains every open set. Thus the map f is measurable. O

3.1.39 Corollary Let f,: X — [—o0, 0] be measurable functions for n € N. Then the functions
sup{fn} limsup, . fn Inf{f,} liminf, o fs
are measurable.

Proof. Let a € R. Observe that the set

(sup{f})~H(a, 0] = | £ " (a, 0]
n=1

is measurable. Hence by the above proposition, the function sup{f,} is measurable. The formula
inf{f,} = —sup{—fn} tells us that the function inf{f,} is also measurable.
Now, for each point x € §2, the sequence of numbers

gn () = sup{fn(2), frs1(2), fara(2), ..}

is monotonic increasing. It follows that

lim sup,, o, fn(z) = inf{gn(z)}

We know that each function f,, is measurable. The above argument tells us that each function
gn is measurable, and that the function limsup,,_, f, is measurable. A similar argument tells
us that the function liminf,, .4 g, is measurable. O

3.1.40 Corollary If f,g: X — [—o0, 0] are measurable functions, then so are the functions
max{ f, g} and min{f,g}. proof to be filled in!

3.1.41 Corollary The limit of a pointwise-convergent sequence of meaurable functions is mea-
surable. proof to be filled in!
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3.2. Measure Spaces

3.2.1 Definition Let € be a measurable space, equipped with a o-algebra A. A measure on §2
is a function p: A — [0, 00] such that:

(M1) The function p is o-additive, i.e.

M (U An) = Z N(An) 5
n=1 n=1

whenever (Ay)nen is a sequence of disjoint mesaurable sets.
(M2) There is a measurable set A such that u(A) < co.

The number p(A) is called the measure of a set A. A measurable space equipped with some
measure is called a measure space.

For the above definition to make sense, we need to make a convention concerning our ‘number’
00, namely that a + 00 = o0 whenever a € [0, 0].

3.2.2 Example Let ) be a measurable space. For any measurable set £ < €2, let us define
w(E) = |E|, where |E| denotes the number of elements of E. Then p is a measure on €2, called
the counting measure.

3.2.3 Example Let € be a measurable space, and let xg € . For any measurable set E < ,

let us define
1 X € E

M(E)={0 0 ¢ E

Then p is a measure on §2, called the Dirac measure.
3.2.4 Proposition Let Q be a measure space, with measure p. Then () = 0.
Proof. Choose a measurable set A such that pu(A) < oo. Then
p(A) = p(A) + (D) + (D) + -+

Hence p() = 0. O]
3.2.5 Corollary Let Aq,..., A, be disjoint measurable sets. Then

(A0 Ap) = p(Ar) + -+ p(An)
proof to be filled in!

3.2.6 Corollary Let A and B be measurable set where A € B. Then u(A) < u(B).
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Proof. The set B\A = B n (2\A) is measurable, the sets A and B\A are disjoint, and B =
A U B\A. By the above corollary

p(B) = p(A) + u(B\A)

The inequality u(A) < u(B) follows since u(B\A) = 0. O

3.2.7 Proposition Let (A,) be a sequence of measurable sets such that A, S Any1 for all n.
Let A=\Jr_| A,. Then lim,_,o pu(Ay) = p(A).

Proof. Let By = Ay, and B, = A,\A,—1 when n > 2. Then the sets B,, are measurable and

disjoint. Further
o0
Ap=Biu---ud, A=|]B,

n=1
Hence

0 N
p(A) = >, u(Bn) =lim } p(Bn) = lim pu(Ay)
n=1

n=1

3.2.8 Corollary Let (A,) be a sequence of measurable sets such that (A1) < 00 and Ap4q1 S Ay
for alln. Let A= ()" An. Then lim, o p(A,) = p(A).

Proof. Let C, = A1\A,. Then the set C), is measurable, C,, < C),41 for all n, and Ule C, =
A1\A. Hence, by the above proposition

lim 1(Cy) = u(Ar\A)

n—o0

We know that the measure p(A;) is finite, and that we have disjoint unions
A =A4,0C, A =A\AU A

Hence
p(AY) — Tim u(Ay) = p(Ay) — p(A)

n—0o0

and
lim u(An) = p(A)

n—o0

The above corollary is false if we omit the assumption that u(A;) < .
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3.3. Lebesgue integration

Simple Functions

3.3.1 Definition A function s: 2 — C on a measurable space € is called simple if the range of
s is a finite set of points.

Let s: 0 — C be a simple function, with image s[X] = {0} U {1, ..., an}. Write A; = s~ ().

Then clearly
n
s = Z QX A,
i=1

and the function s is measurable if and only if each set A; is measurable.

3.3.2 Proposition Let f: Q — [0,0] be a measurable function. Then there are simple measur-
able functions s,: X — [0,00) such that the sequence (s, (x)) is monotonically increasing, with
limit f(x) for each point x € X.

Proof. Let n € N, and ¢ € [0,0]. Then there is a unique integer ky,(t) such that

kn(T)27" <t < (k(t) + 1)27"

Define
kn(t)27" 0<t<n
n n<t<o

(pn(t) = {
The function ¢, : [0,00] — [0, 0] is a Borel function, and

t—2"" < pu(t) <t

if 0 <t < n. Thus we have a monotonically increasing sequence (¢, (t)) with limit ¢. If we write
Sn = @n o f, then (s,) is a monotonically increasing sequence of simple measurable functions,
with pointwise limit f as required. ]

We now come to the first of our definitions of the integral.

3.3.3 Definition Let ) be a measure space, with measure u. Let s: € — C be a measurable
simple function, with set of non-zero values {a1,...,a,}. Write

n
5= ) arxa,
k=1

Let E < Q be a measurable subset of ). Then we define the integral of s over E to be the
complex number

f s dp =) app(A 0 E)
E

k=1
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There are several simple computations we can do immediately with integrals. For example, with
s as above:

JSXEd,u—Zak,uAkmE) Jsdu

k=1 E

3.3.4 Lemma Let Q be a measure space, with measure p. Let s: 8 — [0,00) be a measurable
simple function. Then we can define a new measure @ on ) by the formula

p(E) = JE s dp

Proof. To begin with, observe that ¢(FE) > 0 for every measurable set E, and that if p(E) < oo,
then ¢(E) < o0, so there is at least one measurable set with finite measure. We need to test
o-additivity.

Let (E,) be a sequence of disjoint measurable sets. We know that

w(| B = ) u(E)
=1

i=1

Let {a1,...,ax} be the set of non-zero values of the simple function s. Then
Q0 n o
ol - 3 Sowutac 1)

Exchanging the summation signs is possible since all of the numbers involved in the above
equation are positive. Therefore

ZZaku (A N E;) = ZQO(EZ)

i=1k=1 =1

FCg

and we are done. O

3.3.5 Proposition Let s,t:  — [0,0] be simple functions. Then

fs+tdu=J sdu+ftdu
Q Q Q

n
agxa, U= Z BiXB;
=1

Proof. Write as usual

i
s

~
I
—

Let F;; = A; n B;. Then certainly

intg, (s +1t) du= (i + Bj)u(Eij) = J s dp + f t du
; E

Eij ij
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Now the sets {0, a1, ...,an} and {0, 51, ..., B, } are the ranges of the functions s and ¢ respec-
tively. Let Ag = s71[0] and By = t~1[0]. Then

i=0 =0
Hence
m,n
Q=] By
i,j=0

The sets E;; are certainly disjoint. Hence by the above lemma, we know that

fs+tdu=intgsdu+f t du
Q Q

and we are done. O
If s is a step function, and « € C, then clearly

Jasd,u:ozfsd,u
Q Q

Hence we have proven linearity for integrals of positive-valued step functions.

3.4. Integration of Positive-Valued Functions

3.4.1 Definition Let ) be a measure space, with measure p. Let f: © — [0, 00] be a measurable
function, and let E < 2 be a measurable set. Let S be the set of simple functions, s: Q — [0, ),
such that s(x) < f(x) for all z € Q. Then we define the integral of f over E:

fEf du=sup{fE8 du | s € S}

A few properties of the integral are easy to prove. For example:

e Let f: Q@ — [0,0] and E < Q be measurable. Then

Lf dp = L fxe du

e Let f,g: Q — [0,00] be measurable functions such that f < g, that is to say f(z) < g(x)

E E

whenever F C () is a measurable subset.

40



1.3. Measure and Integration theory 3.4. Integration of Positive-Valued Functions

3.4.2 Theorem (The Monotone Convergence Theorem) Let f,: Q@ — [0, 0] be a sequence
of measurable functions, such that for each point x € Q the sequence (f,(x)) is monotonically
increasing, with limit f(x). Then the function f: Q — [0, 0] is measurable, and

ffdu= i | f. dy
Q n—=w0 Jq

Proof. As the limit of a sequence of measurable functions, the function f is measurable. Since
the seqyebce (f,(x)) is monotonic increasing, with limit f(x), we know that F,, < f,4+1 < f for
all n. Therefore the sequence of integrals (SQ fn) is monotonic increasing, and

[ o

for all n.

Choose a simple function s such that 0 < s < f. Let 0 < a < 1, and write
En ={z Q| fu(z) = as(z)}

Each set FE, is measurable, and F,, < E,; for all n since the sequence (f,) is monotonic
increasing. Since the sequence (f,,) has pointwise limit f, we see that

0
QzUEn

n=1

Further
J fndﬂ>f fndu>af sdu (%)
Q En En

By lemma we can define a measure on the set £ by the formula

o(E) = fE dy

Hence

L s dp = p(Q) = lim o(F,) = lim . dp

by proposition [3.:2.7]

Taking limits in inequality (), we see that

n—a0

lim fndu>afsdu
Q Q

In particular, this inequality holds whenever 0 < o < 1 and s < f. By the definition of the
integral, it follows that

lim fnd,u,Zf f du

and we are done. O
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Let f: Q — [0,00] be a measurable function. By proposition there is a monotonically
increasing sequence of simple functions s:  — [0, 00) with pointwise limit f.

The monotone convergence theorem tells us that

J f=1lim | s,
Q n—=90 Jo

and so gives us a new way of viewing the definition of the integral. Using this viewpoint, the
following result follows immediately from proposition

3.4.3 Corollary Let f,g: Q — [0,00] be measurable functions, and let v, B € [0,00). Then

| @t au=a| rdu+s| g

proof to be filled in!

We can also immediately deduce the following result from the monotone convergence theorem.

3.4.4 Corollary Consider a sequence of measurable functions f,: Q — [0,00]. Then for any
measurable subset 2 < ) we have the formula

S o[ (S5
proof to be filled in!

3.4.5 Theorem (Fatou’s lemma) Let f,: 2 — [0,0] be a sequence of measurable functions.
Then

J liminf, .o fr < lim infn_,oof fn
Q Q

Proof. Let
gn(x) = inf{fn(x)v fn-i—l(x)v fn+2($)’ .- }

Then the function g, is measurable, the sequence (g, ) is monotonic increasing, and the inequality
gn < fr, holds for all n.

We know that

hHolo gn(z) = lminf, o fr(x)

Hence, by the monotone convergence theorem

f liminf, ., fy, = lim J gn < lim infn_,oof fn
Q n=%Ja Q

and we are done. O

The inequality
f lim sup,,_, o, fn = limsup,,_,, f fn
Q Q

is easily deduced from Fatou’s lemma.
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3.5. Integration of Complex-Valued Functions

3.5.1 Definition Let (2 be a measure space, with measure p. We call a measurable function
f:Q — C integrable if

J |fl dp < 0
Q
We write L!(Q) to denote the set of all integrable functions.

Suppose we have a measurable function f and a positive-valued integrable function g such that
|f] < g. Then it follows by the above definition that the function f is integrable. This integra-
bility criterion is often used.

3.5.2 Definition Let f: Q — R be any real-valued function. Then we define functions f*, f~: Q —
[0,00) by the formulae

f+(x> = max(f(x), 0)) f_($> = maX(_f(x)vo)

respectively.

Observe that f = f* — f~. If the function f is measurable, then so are the functions f* and
I

3.5.3 Proposition Let f: Q — R be an integrable function. Then the functions f* and f~ are
also integrable.

Proof. The functions f* and |f| are positive-valued, and f* < [f]. We know that {, |f| < oo,
sof,fT <o
9 )

The proof that the function f~ is integrable is identical to the above. O

3.5.4 Definition Let f: 2 — R be an integrable function. Then we define we define the integral

[ o

It is easy to see that definition agrees with the previous definition when the function f is positive-
valued. Further, the equation

| s du=al ranss| gan

holds for all real numbers «, § € R and integrable functions f,g: Q@ — R.

3.5.5 Definition Let f,g: Q0 — C be integrable functions. Then we define the integral

jﬂ fdp = JQ Re(f) dp + i L Jm(f) dp
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An argument similar to that made above tells us that this integral is well-defined, agrees with
the previous definition for real-valued functions, and is linear.

3.5.6 Proposition Let f: Q) — C be an integrable function. Then

inf f du‘ <[ 111 du
2 Q

Proof. Choose a € C such that |a| = 1 and

iréff d,u‘ =aJQf d,u=fQozf du

Let g = Re(af) and h = Im(af). Then

inffd,ulzf gdu—i—if h du
Q Q Q

Jhdu
Q

inffdu‘zfgd,u
Q Q

Certainly, |infq f du| € R, so

and

However
g < |9l < laf]=|f]
It follows that

inf f du‘ <f £ dy
Q Q

and we are done. O

Observe that the proof of the above result uses only positivity and linearity of the integral.

3.5.7 Theorem (The Dominated Convergence Theorem) Let (f,) be a sequence of mea-
surable functions fp: Q — C such that:

o The limit
f@) = lm fu(o)
exists for all x € €.
e There is an integrable function g € L' () such that |f,(x)| < g(x) for all x € Q and n € N.
Then f e LY(Q), and

Jim Q\fn—f\ dp =0
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Proof. Since each fucntion f, is measurable, the limit function f is also measurable. We know
that |f,| < g for all n. Therefore |f| < g. It follows that f € L'(€).

Now, let
hn:2g_|fn_f|

Observe that h,, = 0 for all n. Hence by Fatou’s lemma
J lim inf,,_ ohy, < liminfnﬁooJ hy,
Q Q
that is
f 29 du < f 29 dp — liminfn_,oof |fr— fl dp
Q Q Q

and so

liminfnaoof |frn— fl du <0
Q
Since |f, — f| = 0 for all n, we deduce that
lim [fn— fl du =0
n—ao0 Q
as required. O
Combining the dominated convergence theorem with proposition we obtain the following

corollary, also referred to as the dominated convergence theorem.

3.5.8 Corollary (The Dominated Convergence Theorem) Let (f,) be a sequence of mea-
surable functions fr: Q — C such that:

o The limit
f(z) = lim f,(z)

n—a0

exists for all x € §2.

e There is an integrable function g € L' () such that |f,(x)| < g(x) for all x € Q and n € N.
Then f e LY(Q), and
i, [ g = | S du

proof to be filled in!
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3.6. Null Sets

3.6.1 Definition Let ) be a measure space, with measure p. Then a set E < () is called a null
set if E is measurable, and p(FE) = 0.

The measure space €2 is called complete if every subspace of a null set is measurable.

The usual manipulations of the axioms tell us that every measure space is contained in a unique
smallest complete measure space. To be more precise, we have the following result.

3.6.2 Proposition Let 2 be a measure space, equipped with o-algbebra M, and measure . Let
us define
M ={ECQ|AcCECB,A BeQ, n(B\A) =0}

Then the set M* is a o-algebra. We can define a measure u* on the set M* by writing
p*(E) = p(A) AcEcCB, ABeQ, u(B\A) =0
proof to be filled in!

As we might expect from the terminology, null sets are irrelevant from the point of view of
integration theory.

3.6.3 Theorem Let f: Q — [0,0] be a measurable function. Then the integral of f is zero if
and only if the function f is equal to zero except on a null set.

Proof. Suppose that the set
N ={xeQ| f(z) # 0}

is a null set. Let s: & — [0,00] be a simple function such that s < f. Then s(z) = 0 when
x ¢ N. The definition of the integral of a simple function tells us that

Jsduzo
Q

The definition of the integral of a non-negative function now implies that

Conversely, suppose that the integral of the function f is zero. Let

A, ={zeQ| f(x) > 1/n}

Then clearly
1
pn) < [ Faus | sdu=o
n An Q
so u(A,) = 0. But
a0
{req| f(x)>0} =[] A,
n=1

Thus o-additivity implies that the set of all points x € Q such that f(z) # 0 has measure zero.[]
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Given two functions f, g: 2 — C, let us say that f and g are equal almost everywhere if they are
equal outside of some set of measure zero.

3.6.4 Corollary Let f,g: Q — C be integrable functions that are equal almost everywhere. Then

Jor=e

3.6.5 Corollary Let f: Q — C be an integrable function. Suppose that

-

whenever the subset & < ) is measurable. Then the function f is equal to zero almost everywhere.

proof to be filled in!

Proof. Let us write
fz) = u(@) +iv(z) = (u' () —u (2)) +i(v7(z) — v (2))

where the functions u and v are real and integrable, and the functions u* and v* are integrable
and non-negative.

Let
E={zeQ|u(x)=0}

w(fr)-f

By the above theorem, it follows that u™ = 0 except on a null set. Similarly, it follows that
u~ = 0 except on a null set. Since the union of two null sets is also a null set, we have shown
that v = 0 almost everywhere.

Then

A similar argument tells us that v = 0 almost everywhere. We conclude that f = 0 almost
everywhere. 0

3.7. The Riesz Representation Theorem

Before we are ready to state the Riesz representation theorem, we need some terminology from
point-set topology.

3.7.1 Definition Let X be a topological space. Then we define the support of a continuous
function f: X — C to be the closure

supp(f) := {z € X | f(z) # 0}

We write C.(X) to denote the set of all continuous compactly supported functions f: X —
C. The set C.(X) is a vector space under the operations of pointwise addition and scalar
multiplication.
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3.7.2 Definition A linear map A: C.(X) — C is said to be a positive functional if A(f) = 0
whenever f = 0.

Let X be a topological space equipped with a Borel measure p such that u(K) < oo whenever
K < X is a compact subspace. Then the integration map

fHLf

The Riesz representation theorem is essentially a converse of the above observation.

defines a positive linear functional.

3.7.3 Theorem Let X be a locally compact Hausdorff space, and let A: C.(X) — C be a positive
linear functional.

Then the set X has a o-algebra Q containing all Borel sets, and a unique measure p on € such
that

A = | 1 du

whenever f € Co(X).

The proof of this theorem is in a series of lemmas; the proof is quite long. Before we begin the
proof, let us note a theorem from general topology which we shall need.

3.7.4 Theorem Let X be a locally compact Hausdorff space, and let U = {U, | a € A} be an
open cover of the space X. Then there is a partition of unity subordinate to the cover U, that is
to say a set of continuous functions uq: X — [0,1] such that supp u, < U, and

Z uo(z) =1
acA

whenever x € X. proof to be filled in!

The following corollary is known as Urysohn’s lemma.

3.7.5 Corollary Let X be a locally compact Hausdorff space, and let K < X be a compact set,
and let U be an open set containing K. Then there is a continuous function f: X — [0,1] such
that

xk () < f(z) < xu(z)

Proof. The collection {U, X\ K} is an open cover of the space X. There is therefore a partition
of unity {f, g} subordinate to this open cover.

The definition of a partition of unity gives us the required inequality for the function f. O

We now begin our proof of the Riesz representation theorem with the definition of the measure
we are looking for.
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3.7.6 Definition Let A: C.(X) — C be a positive linear functional. Let U € X be open. Then
we define

u(U) :=sup{Af | f < xu}
In general, for a subset, £ < X, we define
u(E) =inf{{u(U) | U open ,E < U}
3.7.7 Proposition Let f,ge C.(X), and let f < g. Then Af < Ag.
Proof. Observe g — f = 0. The result follows from positivity and linearity of the function A. [

3.7.8 Corollary Let A and B be subsets of the space X where A < B. Then u(A) < p(B).
proof to be filled in!

Although we have defined a function p for every subset of E, the definition is only sensible for
a certain o-algebra.

3.7.9 Definition We define Qp to be the sollection of all subsets £ € X such that u(E) < oo
and
w(E) =sup{u(K) | K < E, K compact}

We define €2 to be the collection of all subsets £ < X such that £ n K € Qg whenever K is
compact.

We need to prove that the set §2 is a g-algebra which contains all Borel sets; this statement is
not obvious.

3.7.10 Proposition Let V < X be an open subset such that (V) < 0. Then V € Qp.

Proof. Choose a number a < u(V). By the definition of p, there is a function f € C.(X) such
that f < xv and a < Af. Write K = supp(f), and let W be an open set that contains K. Then
Af <pu(W), so Af < u(K), using the above proposition and corollary, and the definition of the
function .

Thus K € V and u(K) > a. It follows that
w(V) =sup{u(K) | K € E, K compact}
and we are done. O

3.7.11 Proposition Let Uy,...,Uy © X be open sets. Then u(Uy v--- 0 Un) < p(Uy) + -+
(Un).
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Proof. Let N = 2. Choose a function g € C.(X) such that g < xy, v,. By theorem there
are functions ui,us € Co(X) such that u; < xu,, u2 < Xuy, and uy(x) + uz(x) = 1 whenever
x € U; u Us. It follows that

UG < XUp, U29 < XU, g =u1g + u2g

and therefore
Ag = Aurg) + Auzg) < p(Ur) + p(Uz)

Since the above inequality holds for every function g € C.(X) such that g < xy,uv,, the result
follows from the definition of g when N = 2. The general result follows by induction. O

3.7.12 Lemma Let Eq, Eo, Es, ... be subsets of the space X. Write
a0
E=|JE.
n=1

Then ”
p(E) < ) ()
n=1

Proof. If u(E,) = oo for some n, then the result is obviously true. Thus, let us suppose that
w(E,) < oo for all n. Choose € > 0. By definition of the function u, there are open sets U, 2V,
such that

p(Va) < p(En) +27"

for all n.

Let U = |J°_; U, and choose f € C.(X) such that f < xy. The support of the function f is
covered by the collection of sets {U,, | n = 1,2,3,...}. Since the function f has compact support,
it follows that it has a finite subcovering, and so

f < XUyu-—-uUN

for some N. By the above proposition, we see that

o0
Af<pUivu---uUn)<p(Vi)+---+pu(Vy) < Z,u(En)+5
n=1

Since the above inueqality holds for every funtion f € xy, and E < U, we see that
o0
p(E) < Y p(En) +¢
n=1

But this inequality holds whenever € > 0, so the result follows. O

3.7.13 Proposition Let K < X be compact. Then u(K) < Af whenever f = xx, and K € Qp.
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Proof. Let 0 < a < 1, and choose f € C.(X) such that f > xx. Write

Vo={zeX | f(z) >a}

Then K € V,, and ag < f whenever f < xy,. Therefore

u(K) < p(Vy) =sup{Ag | g < xv,} <a 'Af

Since this inequaltity holds whenever 0 < a < 1, it follows that u(K) < Af. It follows that
u(K) < oo, and so K € Qp. O

3.7.14 Lemma Let K € X be compact. Then
n(K) = inf{Af | xx < f}

Proof. Let € > 0. Then there is an open set U 2 K such that pu(U) < u(K) + e. By Urysohn’s
lemma there is a continuous function f: [0,1] — X such that yx < f < xu. It follows that

Af<pU)<p(K)+e

The result follows from the above inequality combined with the previous proposition. O
3.7.15 Proposition Let K;,... Ky be disjoint compact sets. Then
p(Er o Ky) < p(K) + -0+ p(Ky)

Proof. Let N = 2. We can find an open set U such that U 2 K7 and U n Ky = ¢J. It follows
by Urysohn’s lemma that we can find a compactly supported function u: X — [0, 1] such that
u(xz) = 1 whenever x € K;, and u(xz) = 0 whenever = € Kj.

Let £ > 0. By lemma [3.7.14] there is a function g € C.(X) such that

XKiuKs S ¢ Ag < ,U,(Kl + KQ) + e

Observe that
XK, <fg9 xx, <(1—f)g

Hence
(K1) + p(K2) < A(fg) + Alg — fg) < p(Ky U Ka) +¢

Since the above inequality holds whenever € > 0, the desired result follows when N = 2. The
general result follows by induction. O
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3.7.16 Lemma Let Eq, Eo, E3, ... be pairwise disjoint members of the collection Qp. Write

Ey

s

E =

n=1

Then ”
W(E) =Y (B

n=1
Further, if p(E) < oo, then E € Qp.

Proof. Observe that the result follows from lemma when p(E) = . Let us therefore
assume that p(F) < c0. Choose € > 0. Since E, € Qp, we can find a compact set K,, € E,, such
that

1(Kn) > p(Ey) — 27"

for each n. Let Hy = K7 U --- u K. Then by the above propositiion:
N N
pE) = p(Hy) = Y, p(Kn) > > p(Ey) —¢
n=1 n=1

Since the above inequality holds whenever ¢ > 0, combining it with the inequality in lemma
we see that

e}
WE) = ) p(Ey)
n=1
Now, if u(F) < oo, and € > 0, then we can find N such that
N
p(E) < Y pu(En) +¢
n=1

It follows that pu(F) < u(Hy) + 2¢, and so E € Qp. O

3.7.17 Proposition Let E € Qp, and let € > 0. Then there is a compact set K and an open
set V such that K < ECV, and p(V\K) < e.

Proof. by definition of the collection 2z, we can find a compact set K € E and an open set

U 2 FE such that . .
wV) =5 <pE) < p(K) + 5

By lemma [3.7.10, we see that V\K € Qp. By lemma |3.7.16, we see

p(K) + p(U\K) = p(U) < p(K) + ¢

and we are done. O
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3.7.18 Proposition Let A,B € Qp. Then the sets A\B, A u B, and A n B belong to the
collection Qp.

Proof. By the above proposition, there are compact sets K and K’ and open sets U and U’ such
that
KcAcU KcBclU

and

pU\K) <e  pU\K') <e

Observe
ABcU\K'cU\K uK\U' vU\K’

Hence by lemme [3.7.12}
W(A\B) € p(K\V) + 22
Further, the set K\V’ is compact, so the above inequality tells us that A\B € Qp.

But Au B = (A\B) u B, so Au B € Qp by lemma [3.7.16| Finally, A n B = A\(A\B), so
A n B € Qp by the above calculation. O

We are now nearly done, and can prove a slightly less technical result.

3.7.19 Theorem The set () is a g-algebra containing all Borel sets.

Proof. Let K < X be compact. If A€ Q, then X\An K = K\(An K), so X\An K € Qp by
the above proposition, and X\ A € €.

Suppose that
o0
A=|JA, A4,eQ

n=1
Let By = A1 n K, and
B, = (A, nK)\(B1u---uUBy) n =2

Then the collection {B,, | n = 1,2,...} is a pairwise disjoint, and B,, € Qp for all n by the above
lemma. But An K = Uf:l B, s0 An K € Qp by lemma [3.7.16 It follows that A € €.

We have proved that the collection € is a o-algebra. If C' € X is a closed subset, then the
intersection K n C'is compact. Thus C n K € Qp, and so C € Q). Thus every closed set belongs
to the collection (2. It follows that the o-algebra {2 contains all Borel sets. O

3.7.20 Lemma
Qp ={EeQ| uF) < w0}
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Proof. Let E € Qp. Then by lemmas [3.7.14] and [3.7.16] we see E n K € Qp whenever K € X is
compact. Then F € Q. By definition of the set Qp, u(E) < oo.

Conversely, suppose that E € Q and p(F) < 0. Let € > 0. We can certainly find an open set
U 2 E such that pu(F) < co. By propositions [3.7.10] and [3.7.17] there is a compact set K < U
such that p(U\K) < e.

We know that E n K € Q. There is therefore a compact set H € E n K such that

WENK)<u(H)+e

But F < (En K) v (U\K). Therefore
1(E) € p(En K) + p(V\K) < u(H) + €

and we see that F € Qp. O

We can now prove our main result.

3.7.21 Theorem The function p is a measure on the o-algebra Q. It is the unique measure
with the property

Af = fX f() dyu(z)
for all f e C.(X).

Proof. Tt follows immediately that p is a measure from lemmas [3.7.16] and [3.7.20l Our next step
is to prove the inequality

Af < L f(z) du(z)

for every real-valued compactly supported function f. To do this, let K = supp(f), and choose
a,b € R such that f[K] < [a,b]. Let € > 0, and choose yo, ..., yn such that

a=yo < - <YN Yn — Yn—1 < € for all n

We can form Borel sets
E, = {:L'EX | Yn—1 <f(.’E) <yn}

The sets E,, are pairwise disjoint with union K. We can find open sets U,, 2 E,, such that
€
w(Uk) < p(Ey) + - f(@) <yn+e

whenever x € U,,.

By theorem we can choose a partition of unity {ui,...,uy} subordinate to the open cover
{Uy,...,Un}. Tt follows that
N
[= Z Un f
n=1
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and by lemma (3.7.14]
N N
<A (Z un> = Z A(uy)
n=1 n=1

But by construction u,f < (y + n + €)uy, and y, —e < f(z) for all z € E,,, so

N N
A< (g +0)A(un) = Y (lal + yx + €)A( |a|ZAun)
n=1 n=1

and

N
< D (lal +yx + ) (u(En) + &/n) — |au(K)
n=1

Multiplying out, we see that

3\(‘7

N N
F <D —e)u(En) +2ep(K)= > (la] + yn +€)
n=1 n=1

so by construction of the integral

féfo dp +e(2u(K) + lal + b +¢€)

Since the above inequality must hold for every choice of € > 0, we see that
/< L f(x) du(z)

Now, if we replace the function f by the function —f, we see that

as required.

-Af < | f@) duta)
X
Combining the above two inequalities, we have the equation

Af = [ f(@) duta)
X
for every real-valued compactly supported function f. The proof of the above equation for

complex-valued functions follows by splitting such a function into real and imaginary parts, and
using linearity.

All that remains is to show uniqueness. Let i/ be a measure such that the eqation

Af = L f(x) dif ()
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holds for every compactly supported function f. Let K be a compact set. By theorem [3.7.4]
given an open set U 2 K, there is a compactly supported function ¢ such that yx < g < xv.
Hence

W (K) < jx fau < (V)

and
p'(U) =sup{Af | f < xu} = p(U)

It follows that pu(B) = u/(B) whenever B is a Borel set, and we are done. O

3.8. Integration of Continuous Functions

We would like to use the Riesz representation theorem to define a measure on the real line R
that gives the usual integral expected from elementary calculus. To apply the Reisz representa-
tion theorem, we need a sensible definition of the integral of a continuous compactly supported
function.

Let us consider a continuous function f: [a,b] — R. Let n be a positive integer. Then the
interval [a, b] can be divided into S™ equal-sized pieces:

a<a+2b-a)<a+22 ") b-a)<--<a+ (2" —1)2")(b—a)<b

Let us define
pny =inf{f(z) |[a+127"(b—a) < f(z) <a+ (r+1)27"(b—a)

and
o1

L(f) = D] 27"(b— a)pn,
r=0
The following observations are clear.

e The sequence (I,,(f)) is monotonically increasing

e Since the interval [a,b] is compact, and the function f is continuous, there is a constant C
such that f(z) < C for all x € [a,b]. Hence I,,(f) < C(b— a) for all n.

It follows that we have a well-defined limit

A(f) == lim I,(f)

n—o0

We would like to extend the definition of the function A. There are two stages to this extension.

e Let f: [a,b] — C be a continuous function. Write f(z) = u(z)+ iv(x), where u,v: [a,b] —
R, and define
A(f) = A(u) + iA(v)
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o Let f e C.(R). Let [a,b] 2 supp(f). Then we define
A(f) = A(flfap)

The following result is straightforward to check.

3.8.1 Proposition The map A is a positive linear functional on the space C.(R). proof to be
filled in!

3.8.2 Definition Let f € C.(R). Then the number A(f) is called the Riemann integral of f.

3.9. The Lebesgue Measure on R

3.9.1 Definition Let A: C.(R) — C be the Riemann integral. Then the Lebesgue measure on
R is the unique measure such that

Lgdu—Mﬂ

whenever f € C.(R).

By the Riesz representation, the Lebesgue measure exists and is unique on the collection of all
Borel sets. The integral of a Borel measurable function with respect to the Lebesgue measure is
termed the Lebesgue integral. We will normally write

b
ff@:memu

3.9.2 Proposition Let a < b be real numbers. Then u(a,b) =b — a.

Proof. Let [¢,d] < (a,b) be a compact interval. By Urysohn’s lemma, there is a function f €
Cc(R) such that x[c.q) < f < X(ap)-

By definition of the Riemann integral:
d—c< J f<b—a
R
Let ¢ > a and d — b. Then f — x(,) and by the dominated convergence theroem,

JR f— w(a,b)

It follows that u(a,b) = b — a, and we are done. O
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A similar computation tells us that
,LL[(L, b] = ,LL[(L, b) = ,U,((I7 b] =b—a
whenever a < b.

The next fundamental property of the Lebesgue measure follows from a topological property of
the real line, which we will state without proof.

3.9.3 Proposition Fvery open subset of the real line R is a countable disjoint union of open
intervals. proof to be filled in!

3.9.4 Corollary Let E € R be a Borel set. Then u(X + E) = pu(E) whenever x € R. proof to
be filled in!

We conclude with a general characterisation of sets of measure zero, or null sets.

3.9.5 Theorem Let E € R be a set such that every subset of A is measurable. Then pu(A) = 0.

Proof. The set R is an Abelian group under the operation of addition, and the set Q is a subgroup.
Let E be a set of real numbers containing precisely one element of each coset z + Q € R/Q.

We claim:

o (r+E)n(s+ E) = whenever r,s € Q, r # s.
e Let x € R. Then we can find an element r € Q such that x e r + E.
To see the first claim, suppose that x € (r+ E) n (s+ E), where r, s € Q. Then there are elements

Y,z € E such that r + y = s + 2, and so y — z € Q. But the definition of the set ¥ means that
r=Ss.

As for the second claim, let x € R. Construction of the set ' means that we can find a point
y € F such that z —y € Q. But x = y + (z — y) so the claim is established.

We now use the above to claims to prove the theorem. Let ¢ € Q, and define Ay := A n (t + E).
The set A; is measurable since it is a subset of the set A. Consider a compact subset K < Ay,
and let

H= | (r+K)

reQnl0,1]

Then the set H is bounded and measurable, so p(H) < oo. The first of the above claims tells us
that the sets r + K are pair-wise disjoint, so

p(H)= > pr+K)= >, u(K)

reQnl0,1] reQnl0,1]
by corollary It follows that p(K) = 0 whenever K € A; is compact.

So u(A¢) = 0. But
A=J4A

teQ
and it follows that u(A) = 0. O
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3.9.6 Corollary Any countable subset of the space R has measure zero. proof to be filled in!

3.9.7 Corollary There are non-measurable subsets of the space R. proof to be filled in!

3.10. The Fundamental Theorem of Calculus

By convention, when a < b are real numbers, and p is the Lebesgue measure on the space R, we
simplfy our notation slightly and write just

Lbﬂx) da = Lbf du

If b < a, we write

Jj f(z) dx := —J: f(z) dx

Linearity of the integral gives us the equation

Lbf(ac) dx = ch(af) dx + J;bf(x) dx

whenever a, b, c € R.

This new notation is convenient when integating a concrete function given by some definite
formula.

In this section we will focus on one major result, which is of absolutely vital importance when
trying to calculate integrals. This result is termed the em fundamental theorem of calculus.

3.10.1 Theorem Let f: [a,b] — C be a continuous function. Define a function F': [a,b] — C
by the formula

F@) = [ 1) dy
Then the function F' is differentiable on the open interval (a,b), and has a one-sided derivative

at the end-points a and b. In all cases, the derivative is given by the formula

Proof. Let € > 0, and let x € [a,b]. Since the function f is continuous, we can choose § > 0 such
that |f(z + h) — f(x)| < e whenever |h| < ¢ and = + h € [a, b].

Let x € [a,b], and © + h € [a, b]. Observe:

h+h
F(x+ h) — F(z) = f f() dy

and
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1.3. Measure and Integration theory 3.11. Product Measures

Suppose that |h| < d. Then |f(y) — f(z)| < € whenever y € [z, z + h], and so:

z+h x+h
[ ﬂm—ﬂ@dﬁsf ) — F(2)] dy < el

x T

Thus:
|F(x+ h)— F(x) — hf(z)] < e|h]

whenver |h| < 4. It follows that the function F' is differentiable, and F'(z) = f(z) as claimed.[]
In actual fact, the more useful form of the fundmantal theorem of calculus is a variation of the
above formula.

3.10.2 Corollary Let F': [a,b] — C be a function with a continuous derivative f. Then

b
ff@ﬂm=F@—FM)

Proof. Define N
Fo(e) = | #) dy

Then by the above version of the fundamental theorem of calculus, Fj(z) = f(z) whenever
x € [a,b]. Hence Fjj(z) = F'(x) whenever z € [a, b], so there is a constant C' such that Fy(x) =
F(z) + C for all x € [a, b].

We know that Fy(a) = 0. Therefore C' = —F(a). We see that
int® f(x) dz = Fy(b) = F(b) — F(a)

as claimed. 0

The various integration formulae, such as integration by parts and the change of variable for-
mula, come from the fundamental theorem of calculus along with the corresponding formulae for
differentives, such as the derivative of a product and the derivative of a composition.

3.11. Product Measures

Let €21 and €5 be measure spaces, with measures p1; and pe on o-algebras M; and My respec-
tively.

3.11.1 Definition We call a subset of the form A x B € X x Y, where A € My and B € My
a measurable rectangle. A finite union of measurable rectangles is called an elementary set.

We write M5 to denote the smallest o-algebra in the set €21 x 29 that contains every measurable
rectangle.
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We want to define a measure on the o-algebra Mjs. Before we can do this, we need some
technical constructions.

3.11.2 Definition Let C be a collection of subsets of some set. Suppose that the following two
conditions hold:

e Let (A,) be a sequence of sets in the collection C such that A, < A, 11 for all n. Then
Uz, 4, eC.

e Let (B,) be a sequence of sets in the collection C such that B, 2 By, for all n. Then
Ur_, B, €C.

Then we call the collection C a monotone class.

The proof of the following lemma is elementary, but rather abstract. We omit it.

3.11.3 Lemma The o-algebra Mo is the smallest monotone class in the product €21 x Qo which
contains all elementary sets. proof to be filled in!

Given a subset E € 1 x {9, and points € Omega; and y € o, let us write
Ey={yeQ|(z,y)e B} E'={ve|(z,y)ecE}
3.11.4 Proposition Let E € Mqo. Then E, inMy and EY € My whenever x € 1 and y € Qs.

Proof. Let x € €. Let M be the collection of all elements F € € x s such that E, € Q.
It is straightforward to check that M is a o-algebra that contains every measurable rectangle.
Therefore Mo € M, and we see that E, € Ms for every measurable set F£ < €1 x )9 and point
T e QQ.

The corresponding statement concerning sets of the form EY is proved in the same way. O

3.11.5 Corollary Let X be a topological space, and let f: €y x Qo — X be a measurable func-
tion. Choose points x € 1 and y € Qo. Then the functions

f(mv_):QQ_)X f(_ay)Ql_)X
are measurable. proof to be filled in!

3.11.6 Definition A measure space € is called o-finite if it is a countable union of spaces of
finite measure.

3.11.7 Example The space R, equipped with the standard Lebesgue measure, is o-finite.

The following result lets us define measures on products of o-finite measure spaces.
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3.11.8 Theorem Let Q1 and Qo be o-finite measure spaces. Let EE € 1 x Q9 be a measurable
subset. Then we can define measurable functions f: Q1 — [0,00] and g: Q1 — [0,0] by the
formulae

fe(x) = p2(Er)  gr(y) = pa(E£Y)

fe = J 9E
0 0y

Proof. Measurability of the functions fr and gp associated as above to a measurable set F <
X x Y follows from the above proposition and corollary; all that remains it to prove the main
equation.

respectively. Further,

Let M be the set of all measurable subsets E < 7 x {29 such that the equation

fE = f gr
of Qo

holds.

Let E = A x B be a measurable rectangle. Then fr = ua(B)x4 and gg = u1(A)xp. It follows
that

o= L y2(B) = i (A)ua(B) fg g5 = jB 11 (A) = 11 (A)ua(B)

so F e M.

Let (E,) be a sequence of sets in the collection M such that E,, € E, 1 for all n. Write
o0
E = U E,
n=1

Then the sequences of functions (fg, ) and (gg,) are monotonic increasing, with limits fr and
g respectively. We know that E, € M for all n, so that the equation

J fE, =J 9E,
o 0y

holds for all n. The monotone convergence theorem gives us the equation

fE = f gr
of Qo

and so tells us that £ € M.

As a consequence of the above calculation, we can easily show that the union of a discrete
sequence of measurable sets in the set M also belongs to the set M. Let (E,) be a sequence of
sets in the collection M such that E; € A x B, where p;(A) < 00, ua(B) < o0, and E, 2 Ep4q

for all n. Write w
E = U E,

n=1
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Then an argument similar to the above one, only using the dominated convergence theorem
rather than the monotone convergence theorem, tells us that the set F belongs to the collection

M.

Now, let Q1 = % ™ and Q, = U2, O where u1 (™) < o0 and (") < oo for all

m,n € N. Given a set F < )1 x (o, let us write

Epmn = E o (2™ x o

Let C be the collection of all measurable sets E < 1 x 9 such that E,,, € M for all natural
numbers m and n. Then the above calculations tell us that the collection C is a monotone class
that contains every elementary rectangle. It follows from lemma [3.11.3] M5 < C, and we are
done. ]

To paraphrase the above theorem, the equation

fnl (JQQ xe(@,y) dw(y)) dp (x) = LQ (Ll XE(z,y) dul(ﬂf)> dpa(y)

holds for every measurable set E < 1 x .

3.11.9 Definition Let 21 and 29 be o-finite measure sets. Then we define a measure p on the
product 21 x o by writing

ey | ( [ vt dm<y>) (o) = [ (L (o) din(s) ) dua)

whenever the set £ < 7 x {9 is measurable.

It is easy to check that the above definition satisfies the axioms required of a measure. As a
special case of the above definition, we can now define a Lebesgue measure on the space R" by
viewing it as a product of copies of the space R. This measure is defined on every Borel set, and
the measure of the n-dimensional cuboid

[a1,b1] x -+ X [an, by]

is the product
(by — a1) (b2 — a2) -+ (b — )

3.12. Fubini’'s Theorem

In the previous section, we saw how to define measures on products of o-finite measure spaces.
We can therefore integrate on such spaces. The purpose of this section is two state two results
on the integrability of such functions, and how they are integrated. These results are usually put
together, and referred to in one piece as Fubini’s theorem.
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3.12.1 Theorem Let Q1 and Qo be o-finite measure spaces, and let f: Q1 x Qo — C be an
integrable function. Then the functions f(x,—) and f(—,y) are integrable almost everywhere,
and the functions

v | flr,y)dp(y) y— | flz,y)du(y)
Qo Qo

are integrable. Moreover,

lez f(z,y)du(z,y) = Ll ( o f(z,y) duz(ﬂ)) duy (x) = L2 < o f(z,y) dul(x)> dpa(y)

Proof. Let s: Q1 x Q9 — C be a simple function. Then the functions s(z,—) and s(—,y) are
integrable almost everywhere, the functions

z— | s(z,y)dus(y) y— | s(z,y)dua(y)
QQ QQ

are integrable, and the equation

JﬂleQ s(@,y)du(z, y) = Ll <L2 s(z,y) d#z(Q)) dp(z) = L2 <Ll s(x,y) d,ul(m)> dua(y)

holds by theorem [3.11.8| and the definition of the product measure.

Now, suppose that f(z,y) = 0 for all points (z,y) € 1 x Q2. Since the function f is measurable,
by proposition there is a monotonically increasing sequence, (s,), of simple functions, with
point-wise limit f. The result therefore follows in this case by the monotone convergence theorem.

By splitting a real-valued function into positive and negative parts, we see that the result holds
for all real-valued functions. We can deduce the result for complex-valued functions by splitting
such a function into real and imaginary parts. O

For the above theorem to be useful, we would like a criterion for a function f: €21 x Q9 — C to
be integrable. Fortunately, such a condition forms the second half of Fubini’s theorem, which is
also sometimes referred to as Tonelli’s theorem.

3.12.2 Theorem Let 21 and o be o-finite measure spaces, and let f: Q1 x Qo — C be an
integrable function. Suppose that

Lz (Ll 7.9l dul(x)> dpa(y) < oo

Then the function f: Qq x Qo — C is integrable.

or

Proof. The result is obvious if the function f is simple. A similar argument to the proof of
Fubini’s theorem gives us the result in general. O
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Combining the two theorems in this section (ie: the two halves of Fubini’s theorem), we have
the following handy result on swapping the order of integration.

3.12.3 Corollary Let Q1 and Qo be o-finite measure spaces, and let f: Q1 x Qo — C be an
integrable function. Suppose that

Then
LQ ( o f(z,y) dm(:r)) dua(y) < o = o ( N f(z,y) d/@(y)) dpn (z) < o0

proof to be filled in!
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Functional Analysis
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II.1. Topological Vector Spaces

1.1. Topological division rings and fields

1.1.1 Vector spaces with a compatible topology can not only defined for vector spaces over the
ground fields R and C but also over fields K carrying an absolute value |- | : K — Rxg. This
endows the ground field with a topology which will be needed in the definition of a topological
vector space. We therefore give here a brief introduction to topological division rings and fields
first.

1.1.2 Definition Let R be a division ring. By an absolute value on R one understands a map
|- | : R — R such that the following axioms hold true.

(VDR1) The function | - | is multiplicative that is

lzy| = |z||ly| forall z,ye R .

(VDR2) The triangle inequality is satisfied which means that

|z +y| <|z|+|y] foralz,yeR.

(VDR3) For all z € R the relation |z| = 0 holds true if and only if x = 0.

A division ring or field endowed with an absolute value is called a valued division ring respectively
a valued field. An absolute value | - | on a division ring R and the corresponding valued division
ring (R, | -|) are called non-archimedean if the strong triangle inequality is satisfied that is if

(VDR4) |z + y| < max{|z|, |y|} for all z,y € R.

Otherwise |- | and (R, |- |) are called archimedean.

1.1.3 Lemma Let (R,|-|) be a valued division ring. Then
i) =1
(i) | — x| = |z| for all x € R, and

(it) 2] — |yl| < le = y| < |e| + |y| Jor all 2,y € R.
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Proof. holds true since |1| = [12| = |1]? and [1] # 0 by 1 # 0. To verifyit suffices to show
that | — 1| = 1. But that holds true since | — 1| = |[(—=1)?| = 1 and | — 1| > 0. The last claim
follows by

—lz =yl =zl = (y = 2| + |2]) <[z = [yl < |z =yl + ly[ = |y = [z — 9]

and
lz—yl=lz+ (=y)| < l|z[+ |-yl = [z] +[y] . 0

1.1.4 Examples (a) Obviously, the standard absolute values

T ifz>=0

. and || :C — Rsg, 2> V2Z
—z ifz <0

"‘OO:QaRHRZ()?x'_){

are absolute values on the fields @Q, R and C, respectively. These absolute values are all
archimedean since |1 + 1|o; = 2 > 1. Unless mentioned differently, we always assume Q, R
and C to be equipped with the standard absolute values. If no confusion can arise we usually
write | - | instead of | - |o.

(b) The standard absolute value on the quaternions

| lo :H—>Rsg, g=a+bi+cj+dk—/Gg=Va2+02+2+d,
where a, b, ¢, d are real, is an archimedean absolute value. Usually it is briefly denoted | - |.

(c) For every division ring R the map

is a non-archimedean absolute value. It is called the trivial absolute value on R.

(d) An absolute value |- | : F — R( defined on a finite field F' has to be trivial. To see this
observe that for each z € K* there exists an n € N such that 2™ = 1. This entails |z|" = 1, hence
|z| =1 for all z € K*. So |- | is trivial.

(e) The field of formal Laurent power series K((X)) over a field K can be equipped with an
absolute value as follows. Choose 0 < € < 1 and define the absolute value |ZkeZ apX k| of an

element ), ., a, X" € K((X)) as €", where n is the minimal integer such that a,, # 0.

(f) Let p be prime number. For every integer m # 0 let v,(m) be the exponent of p in the prime
factor decomposition of m that is m = p*»(™n where n is relatively prime to p. For m € Z and
n € Nx¢ one defines the p-adic absolute value of the rational number z = 7 by

|$’p = p—up(m)-ier(”) else .

Note that |z| » does not depend on the particular representation of x as the quotient of integers

m and n. By definition it is immediately clear that the p-adic absolute value is an absolute value
on Q indeed. It is non-archimedean.
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1.1.5 Proposition A valued division ring (R, |- |) is non-archimedean if and only if the image
of Z under the canonical map Z — R is bounded.

Proof. Assume that (R,|-|) is a non-archimedean valued division ring. Then, [0-1] =0 =0
and, under the assumption that |[(n — 1) - 1| < 1 for some n € Nog, [n-1| =|(n—1) -1+ 1] =
max{|(n — 1) -1],1} = 1. Hence by induction and since | — 1| = 1 one obtains that |n- 1| < 1 for
all n € Z, and the image of Z in R is bounded.

To show the converse assume that the image of Z in R is bounded by some constant C' > 0.
Then, for all z,y € R and n € N5 by the binomial formula and the triangle inequality

kz:_o (Z) ghynk

Taking the n-th root gives |z + y| < ((n + 1)C) Yn max{|z|, |y|} which after passing to the

[z +yl" = < (n+ 1) Cmax{|z], [y[}" .

limit n — o0 entails |z + y| < max{|z|, |y|} since lingo ((n + 1)0)1/n = 1. Hence (R,|-]) is
n—

non-archimedean. O

1.1.6 Proposition Let | - | be an absolute value on the division ring R. Then for every 7 > 0

with 7 < 1 the map |- |7 : R — Rxq is an absolute value on R as well. It is archimedean if and
only if | - | is archimedean.

Proof. To prove that | - |” is an absolute value it suffices to show that (a + b)” < a” + b" for
all a,b = 0. Without loss of generality we may assume a > b > 0. By dividing through 5™
one sees that the claim is equivalent to (¢ + 1)” < ¢" + 1 for all ¢ > 1. For ¢t = 1 this is
certainly true. The derivative of the function h : [1,00) —» R, t +— (¢t +1)" — t” now is given by
W(t) = 7((t+1)7"" —¢"~1) which is negative since 7 —1 < 0 and 1 + ¢ > ¢ > 1. Hence h is
monotone decreasing and (¢t + 1)" —¢™ < 1 for all ¢ > 1.

Since (0,00) — R, ¢ — 7 is strictly increasing and unbounded, the image of Z in R is unbounded

with respect to | - | if and only if it is with respect to |- |7. O

1.1.7 An absolute value |-| : R — Rx( on a division ring R induces the metric d : R x R — R,
(z,y) — |z — y| which then gives rise to a topology on R. This topology has the following
properties:

(TDR1) Addition + : R x R — R is continuous.
(TDR2) Multiplication - : R x R — R is continuous.

(TDR3) Inversion (-)~!: R* — R* is continuous, where R* denotes the set of units in R
ie. R* = R\{0}.

Proof. Addition is continuous since for all a, b, z,y € R by the triangle inequality
dz+y,a+b)=|r+y—(a+b)|<|zr—a|+|y—>b =d(x,a)+dy,bd) .

Actually, this even shows that addition is Lipschitz continuous. Now fix a,b € R and let C =
max{|al, |b|} + 1. Then for all z,y € R with d(y,b) <1

d(z-y,a-b)=|(z-y—a-y) +(a-y—a )| <|z—allyl+lally — b < C(d(z,a) +d(y,b)) .
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Hence multiplication is continuous. Finally, fix a € R* and let x € R* with d(x,a) < |;—‘ Then

|z| = |a| — d(z,a) > %‘ > 0 and

2 d(z,a) .

1
P S N T I PN IO § I S =
d(z ' a ') = all=]z"" a7 |z —q 2] |a’d(ac,a) < a2

So inversion is also continuous. O

1.1.8 Definition A division ring or field R which is equipped with a topology so that |(TDR1)|
(TDR2)| and [[TDR3)| are satisfied is called a topological division ring or a topological field, respec-
tively.

1.1.9 Lemma If |- | is a non-trivial absolute value on the division ring R, then there exists an
element t € R* such that the sequence (t")nen converges to 0. Furthermore in this case every
0-netghborhood in R contains infinitely many elements.

Proof. By non-triviality of |-| there exists t € R* such that || # 1. By possibly passing to ¢! we
can assume |t| < 1. Since then lirrglo [t|™ = 0, the sequence (t")nen converges to 0. This implies
n—

in particular that for every ¢ > 0 the open ball B(0,e) = {t € R | |t| < €} contains infinitely
many elements. So the lemma is proved. O

1.1.10 Definition Two absolute values |- | and |- | on a division ring R are called equivalent if
they induce the same topology on R.

1.1.11 Theorem Let |- | and |-|" be two absolute values on the division ring R. Then they are
equivalent if and only if there exists e > 0 such that |-|" = |-|7. In particular the trivial absolute
value is the only one inducing the discrete topology on R.

Proof. Let us first show the following proposition.

(A) If | - | and | - | are equivalent, then the relation |z| < 1 holds true for x € R* if and only if
lz|" < 1.
Since |z7!| = ﬁ and |1:_1|/ = ﬁ for all x € R™, Wimplies that |z| > 1 if and only if || > 1
and that || = 1 if and only if |z|" = 1. To verify claim assume now that 0 < || < 1. Then
lim |z™| = 0, hence (2™)pen converges to 0. By assumption, lim |2"|" = 0 then holds as well

n—0o0 n—0

which implies that |z|" < 1. By switching |- | and | - | the converse holds true, so is proved.
Next we show that | - | is trivial if and only if the induced topology on R is discrete. Namely,

if | - | is non-trivial, then there exists x € R* such that |x| # 1. After possibly passing to % we
can achieve that || < 1. So lim |2"| = 0, which means that (z"),ey is a sequence of non-zero
n—0o0

elements of R converging to 0. But this implies that the singleton {0} is not open in the topology
induced by | - |, hence this topology is non-discrete. Since obviously the trivial absolute value
induces the discrete topology on R the second claim of the theorem is proved.

Now assume that |- | = |- |" for some 7 > 0. Then a subset B < R is a metric open ball with

respect to | - | if and only if it is one with respect to | - | since for 2 € R and £ > 0
{yeR|ly—z|<e}={yeR||ly—z/ <c} and

{yeR|ly—a|'<e} ={yeR| ]y—:z:|<51/7}.
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| !/

Hence the open sets with respect to the metric defined by |- | coincide with those defined by | -
and the two absolute values are equivalent.

Let us finally show the other direction and assume that |-| and |-|" are equivalent. By the already
proven second claim of the theorem we can restrict to the case where the induced topology is
non-discrete which means to the case where both |-| and |-|" are non-trivial. We show that there
exists 7 > 0 such that |z|" = |z|™ for all € R* with |z| > 1. This is sufficient, since if |z| = 1,
then |z|" =1 =|z|” for any o > 0 by and since if z € R* with |z| < 1 then |z7!| > 1 and

11
=1 |

2| = = [2|".

The existence of a 7 > 0 with the claimed property is equivalent to the function

RX —>R T — ln‘$|/

In|z|

being constant. Assume that that is not the case. Then there exist z,y € R* with |z|, |y| > 1

such that 212l # Injyl’ By possibly switching & and y we can assume jel"  Inl" By that

In [z Infy| - In [z Iny]
. . Inlz| In|z| . . . .
implies 1 W7 < Iy Since the logarithms are positive by assumptions on z and y and |(A)} Hence

there exists a rational number % with p, g € N5 such that

In|z|" p In|z|

Inly" ¢ Infyl’

Then |29 < |yP|" and |yP| < |2?| which entails

! xq
<1 and “>1.
yp

24
=
This contradicts and the theorem is proved. O

1.1.12 Remarks (a) By Ostrowski’s theorem (Ostrowski, 1916, p. 276), see also (Gouvéal 1997,
Thm. 3.1.3), every non-trivial absolute value on the field Q of rational numbers is either equivalent
to the standard absolute value | - |, or to a p-adic absolute value | - |, for some prime number p.
Observe that for different primes p and ¢ the absolute values | - |, and | - | are not equivalent.

(b) Another theorem of Ostrowski (Ostrowski, 1916, p. 284), sometimes called big Ostrowski’s
theorem, tells that for every archimedean valued field (K, |-|) there exists an embedding ¢ : K < C
into the field of complex numbers with its standard absolute value and a positive real number
7 < 1 such that

|z| = [e(z)|l, forall ze K.
In particular this means that every complete archimedean valued field is isomorphic to either
(R,|-|%,) or (C,|-|7,) for some positive 7 < 1.

(c) The p-adic absolute values on Q have extensions to R by (Lang, 2002, XII, §4, Thm. 4.1).
This is a highly non-obvious result. To prove it one has to check first that | - |, can be extended
to an absolute value | - | on the field k of real numbers algebraic over Q. This extended absolute
value is, and that turns out to be crucial, again non-archimedean. Now one observes that | - |
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can be extended to the polynomial ring k[ X] by the Gauff norm |p(X)| = maxo<i<n{a;} where
p(X) =ap, X"+ ...+ a1 X + ap € k[X]. The Gauf norm obviously extends to an absolute value
on the fraction field k(X). Again, this extension is non-archimedean. Now one recalls that R
is a purely transcendental field extension of k and uses a transfinite induction type argument
involving the just constructed Gauk norm to extend |-| from K to R. The thus obtained extension
of the p-adic absolute value to R is not unique. In its construction, the axiom of choice is used,
so one can not even give an explicit formula for such an extension.

1.2. The category of topological vector spaces

Vector space topologies

1.2.1 Definition Let R be a topological division ring. A topology T on a vector space E over
R is called a vector space topology if the following axioms hold true:

(TVS1) Addition + : E x E — E is continuous.
(TVS2) Multiplication by scalars - : R x E — E is continuous.

The topology T on E is called translation invariant if for every w € E the linear map £, : E — E,
v — v + w is a homeomorphism.

A vector space E endowed with a vector space topology on it is called a topological vector space
(over R), for short a tvs

1.2.2 Remark Let us recall at this point some notation from linear algebra. Assume that V is
a left vector space over the divison ring R. If A, B — V are two non-empty subsets, then A + B
is the set of all v € V for which there exist z € A and y € B such that v =z +y. If A or B is
empty, then A + B is defined as the empty set. In case A is a singleton that is if A = {z}, then
we often write z + B instead of {z} + B. If B < P(V) is a non-empty set of subsets of V, then
we denote by A + B and x + B the sets {A+ Be P(V) | Be B} and {x + Be P(V) | B € B},
respectively. If A < P(V) is a second non-empty set of subsets of V, then A + B stands for the
set of all sets of the form A + B, where A € A and B € B.

In case C'is a subset of the ground ring R, then C - A is defined as the set of all v € V for which
there exist r € C' and x € A such that v = r-z. If r € R we write r - A for {r} - A. Likewise, if
x €V, C -z stands for C - {z}. Analogously as for addition the sets €- A, C- A and C- A are
defined when € ¢ P(R) and A < P(V) are non-empty.

1.2.3 Proposition Let E be a tvs over a topological division ring R. Then the following holds
true:

(i) For everyr e R* and w € E the homothety £, ,, : E — E, v — rv 4+ w is a homeomorphism
with inverse £,—1 _,—1,,.

(ii) Let w be an element of E and r € R*. A filter base B on E then is a filter base for the zero
neighborhoods if and only if w + rB is a filter base for the neighborhoods of w.
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(iii) If B is a filter base of the filter of zero neighborhoods, then the closure of any non-empty
A c E is given by -
A=(A+U.

(iv) Let A c E be open and B < E. Then the set A + B is open.

(v) Let A,B c E be closed and assume that A is quasi-compact that is that any filter on A has
a cluster point. Then the set A+ B is closed.

(vi) The space E is|(T3) | or, equivalently, each point of E possesses a neighborhood base con-
sisting of closed subsets.

Proof. ad (7). The homothety ¢, ,, is continuous since addition and multiplication by a scalar
are continuous maps on a tvs Since for all v e V

1

bt 14y 0 Lpy(v) = 77 (ro + w) —r'w = v, and

braw 0 byt 1y (V) = 7(r o —rTw) +w =0
the homothety ¢, ,, is invertible, and its inverse is £,-1 _,-1,,.
ad (it). This follows since £, ,, is a homeomorphism.

ad (i1). Let B = (] A+ U. Let v be an element of the closure of A. Then, for U € B, there
UeB
exists an element a € A nv —U by and since —U is a zero neighborhood. Hence v € a + U,

and A c B follows. Now let v € B and V be a neighborhood of v. Then there exists U € B such
that v — U < V. By definition of B there exists an element a € A such that v € a + U. Hence
a € v — U < V which implies that v € A. So B c A.

ad (iv). The set A+ B is either empty or coincides with the union J,.gv + A. In the latter
case, each of the sets v + A is non-empty and open by continuity of addition. So A + B is open
under the assumptions made.

ad (v). We can assume that A and B are non-empty because the claim is trivial otherwise.
Assume that A + B is not closed. Then there exists an element v € E\(A + B) such that each
neighborhood of v meets A+ B. This means in particular that the restriction of the neighborhood
filter U of v to A + B is a filter base. Consequently, (—B + U) n A is a filter base on A, hence
possesses an accummulation point z € A. For each neighborhood V € U the point z is then
contained in the closure of —B + V. Hence, by x is contained in v — B + U + U for
every zero neighborhood U. Since by continuity of addition U + U runs through a base of zero
neighborhoods when U runs through the zero neighborhoods, € v — B = v — B follows. Since
x € A this contradicts the assumption v € A + B and A + B has to be closed.

ad (vi). Let ve E, A c E closed, and assume v ¢ A. Choose an open neighborhood V' of v such
that V n A = J. Then there exists an open zero neighborhood U such that v+ U +U < V. By
possibly passing to U n(—U) we can assume that U = —U. Now v+U is an open neighborhood of
v and A+ U one of A. These neighborhoods are disjoint because if the intersection v+ U n A+ U
is non-empty, then there exists an element w € v + U + U n A since —U = U. This contradicts
VnA=g sov+Uand A+ U are disjoint neighborhoods of v and A, respectively. Hence E

satisfies |(T3) | O
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1.2.4 Corollary FEvery vector space topology on a vector space over a topological division ring
1s translation invariant.

Proof. This follows immediately by Proposition O

1.2.5 Definition A subset C' of a vector space E over a valued division ring (R, | - |) is called
(i) symmetric if —v e C for all v e C,

(ii) circled or balanced if rv € C for all v € C and r € R with |r| < 1.

1.2.6 Remark Symmetry of a subset of a vector space of a division ring is even defined when
the underlying division ring does not carry an absolute value.

1.2.7 Lemma Let C be a subset of a topological vector space E over a valued division ring (R, |-|)
and r € R.

(i) If C is symmetric, then the closure C and the interior C are symmetric.
(ii) If C is circled, then the closure C and the union C U {0} are circled.

(iii) The set rC is symmetric (respectively circled) if C has that property.

Proof. Without loss of generality we can assume C # ¢J. Claim . then follows immediately
since multiplication by —1 is a homeomorphism. To prove claim |(ii)| assume that C' is circled.
Let s € R with |s| < 1. Assume v € C and consider sv. We have to show that sve C. If s =0
then sv = 0 € C < C since C is circled. So we can assume s # 0 and need to show that for
every neighborhood V' of sv the intersection C' n V' is non-empty. Since |s| > 0, the homothety
l; : E - E, w — sw is a homeomorphism with inverse £,—1. Hence s~V is a neighborhood of
v. Since v lies in the closure of C' there exists an element w e C n s~'V. Hence sw e C n'V by
assumption on C and C' is circled.

If veCu{0}then 0 =0-veC u{0}. It remains to show that sv e C' U {0} for s € R with
0 < |s| < 1 and v € C\{0}. Under this assumption the homothety /s is a homeomorphism, so sC
is an open subset of C' since C is circled. Hence sv € sC < C, and C' U {0} is circled as well.

Claim follows immediately from the observation that for v € C and s € R the relation
srv € rC holds true if sv e C. O

1.2.8 Proposition and Definition The intersection of a non-empty family (C;)ier of symmet-
ric (respectively circled) subsets C; < E, i € I of a topological vector space E over a valued division
ring (R, ||) is symmetric (respectively circled). In particular, if A < E is a subset, then the sets

SymA = ﬂ B and CircA = ﬂ B
AcBcE AcBcE
B is symmetric B is circled

are symmetric and circled, respectively. They have the property that Sym A is the smallest sym-
metric and Circ A the smallest circled subsets of E containing A. They are called the symmetric
and the circled hull of A, respectively. Analogously,

SymA = ﬂ B and CircA = ﬂ B
AcB=BcE AcB=BcE
B is symmetric B is circled
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are called the closed symmetric and the closed circled hull of A, respectively. They have the
property that Sym A is the smallest closed symmetric and Circ A the smallest closed circled subset
of E containing A.

Proof. Note first that all the hulls in the proposition are well-defined since E is closed and circled.
Let C denote the intersection of the family (C;);er. Assume that for some r € R with |r| <1
the inclusion rC; < C holds true for all ¢ € I. Then rC < C, hence if all C; are symmetric
(respectively circled), so is C. This observation now entails that Sym A is symmetric, Circ is
circled, Sym A is closed and symmetric, and finally that Circ A is closed and circled. Moreover,
all those sets contain A. The minimality properties of these sets are clear by construction. [

1.2.9 Remark Observe that by the propositiorﬁ is symmetric if and only if Sym A = A and
circled if and only if Circ A = A. Analogously, Sym A = A if and only if A is closed symmetric
and Circ A = A if and only if A is closed and circled.

1.2.10 Lemma Let E be a topological vector space over the valued division ring (R,|-|) and
A c E non-empty. Then

SymA=Au—-A and CircA = U rA .

reR, |r|<1

For the closed hulls one has

SymA =SymA and CircA = CircA .

Proof. Since A U —A is symmetric by definition, contains A, and is contained in Sym A, the
equality Sym A = A U —A holds true. Similarly, | J,. R |r|<1 rA is circled by definition, contains
A, and is contained in Circ A by definition of the circled hull. Hence Circ A = UTE& Ir|<1 rA.
The remainder of the claim follows from Lemma [L.2.7 O

1.2.11 Definition Assume that B, C are subsets of a vector space E over the valued division
ring (R,|-|). Then one says that

(i) C absorbes B if there exists a real number ¢ € R such that B < rC for all r € R with
r| =t

(ii) C is absorbing or absorbent if C' absorbes every one-point set of E that is if for every v € E
there exists t € R>q such that v € rC for all r € R with |r| > ¢.

If the vector space E carries in addition a vector space topology, then one says that

(iii) the subset B < E is bounded if it is absorbed by every zero neighborhood.

1.2.12 Lemma Let E be a vector space over the valued division ring (R, |-|). Then the following
holds true.

(i) If C4,...,Cy are absorbing subset of E, then the intersection C1 ... Cy, is absorbing.
(ii) If C is an absorbing subset of E, then rC' is absorbing for every r € R*.

Proof. ad (i). Let v € E and choose t1,...,t, € Rsg such that v € rC; for |r| = t;. Put
t = max{ti,...,tp}. Thenver(Ci n...nC,) for |r| = t, hence C1 n ... C, is absorbing,.
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ad (ii). Choose t € R>q such that v € sC for all s € R with |s| > ¢. Then one has |sr| > t for all
s € R with |s| > |£—|, hence v € s(rC) for all such s. Therefore rC' is absorbing. O

1.2.13 Proposition The filter of zero neighborhoods of a topological vector space E over (R, |-|)
has a filter base B with the following properties:

(i) For each V € B there exists U € B such that U +U < V.
(i1) Every element V € B is circled and absorbing.
(iii) There exists an element r € R* with 0 < |r| <1 such that V € B implies rV € B.

Conversely, if B is a filter base on an R-vector space E such that to hold true, then
there exists a unique vector space topology on E such that B is a neighborhood base at the origin.
In case the ground ring R is archimedean, a filter base on E which satisfies and already
mnduces a unique vector space topology having B as a neighborhood base at 0. In either of these
two cases, the thus constructed topology coincides with the coarsest translation invariant topology
for which B is a set of zero neighborhoods.

Proof. Assume that E is a tvs Let B be the set of circled neighborhoods of 0. We show first that
B is a base of the filter Uy of zero neighborhoods. Let W € Uy. By Axiom there exists
an € > 0 and an open zero neighborhood U such that sU < W for all s € R with |s| < e. Then
V= U sU is a zero neighborhood since by Lemma [1.1.9) the set of s € R* with |s| < &

seR* & |s|<e
is non-empty. By construction V is contained in W and circled, so V € B. Hence B is a filter
base of Uyp.

Next recall that there exists » € R* with 0 < |r| < 1 since the absolute value | - | is non-trivial.
Let V € B. Then sV < V for all s € R with |s| < 1 which entails srV < rV for all such s. Hence
rV is circled and an element of B as well. This proves Since addition on E is continuous,
there exist for given V' € B open neighborhoods Uy, Us of the origin such that Uy + Us < V.
Choose U € B such that U < Uy n Us. Then U + U < V and is proved. To show that any
V € B is absorbing let v € E. By continuity of scalar multiplication there exists € > 0 such that
sv eV for all s € R with |s| < e. By Proposition this entails v € sV for all s € R with
|s| > e and V is absorbing.

Now assume that E is an R-vector space and that B is a filter base that satisfies and, if
| -] is non-archimedean, Since B consists of non-empty circled sets, 0 € V for all Ve B. Let
T < P(E) be the set of all U < E such that for each v € U there exists V € B with v +V < U.
By definition and since B is a filter base, T is a topology on E. By construction, 7T is also the
coarsest translation invariant topology for which B is a set of zero neighborhoods. We show that
B is a base of the filter Uy of zero neighborhoods. By definition of T there exists for each U € Ug
a V € B such that V < U. So it remains to show that each V € B is a zero neighborhood. To
this end let U be the set of all v € V for which there exists a W € B with v + W < V. Since
0+ V < V one has 0 € U. The relation U < V holds because 0 € W for all W € B. Now let
v e U. By|(i)|there exists W’ such that v+ W'+ W’ < V which entails v+ W’ < U. Hence U € T
and V is a zero neighborhood. Next we verify that T is a vector space topology. We start with
continuity of addition. Let W be an open neighborhood of v + w, where v,w € E. Then there
exists V € B such that v + w + V < W. Choose U € B such that U + U < V. Then v + U and
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w + U are neighborhoods of v and w, respectively, and (v+U)+ (w+U) cv+w+V < W. So
addition is continuous. We continue with scalar multiplication. Let W be an open neighborhood
of rv, where r € R and v € E. Then there exists V € B such that rv + V +V < W. Since V is
absorbing by |(ii)| there exists € > 0 such that (s —r)v € V for all s € R with |s —r| < e. Now if
| - | is non-archimedean choose t € R* according to and put V,, = t"V for all n € N. In the
archimedean case let ¢ = % and use (i) to construct recursively a sequence (V},)nen of elements of
B such that 2"V,, = V,,+...+V, < V, where the sum has 2" summands. In either of these cases,
choose N € N large enough so that [t|V < |T|1+E. Then Vy € B and v + Vy is a neighborhood of
v. Moreover, for w € v + Viy there exists an element z € V such that w — v = tVz. Then the
relation s(w — v) = st™x € V holds whenever |s — r| < ¢ since Vi is circled. Hence for such w
and s

sw=rv+s(w—v)+(s—rjverv+V+VcW.

This means that scalar multiplication is continuous, and the proof is finished. O

Morphisms of topological vector spaces

1.2.14 Definition By a morphism of topological vector spaces over the topological division ring
R one understands a continuous R-linear map f : E — F between two topological vector spaces
E and F over R. The space of morphisms between E and F will be denoted Hompg 1vs(E, F) or
just Hompg(E, F) or Hom(E, F) if now confusion can arrise.

1.2.15 Theorem The topological vector spaces over a topological division ring R as objects
together with their morphisms form an additive category which we denote by R-TVS. More
precisely, R-TVS is a category enriched over the category of R-vector spaces where addition and
scalar multiplication on the hom-spaces Hom(E, F) are given by

+ : Hom(E,F) x Hom(E,F) —» Hom(E,F), (f,9)— f+g=(E2v— f(v) +g(v) e F) ,
-: R x Hom(E,F) - Hom(E,F), (r,f)—r-f=(Esv—r-f(v)eF) .

Proof. Observe first that the identity map idg on a topological vector space E is linear and
continuous and so is the composition go f of two morphisms of topological vector spaces f : E — F
and g : F — G. Hence topological vector spaces over R together with linear and continuous maps
between them form a category.

Next check that the hom-space Hom(E, F) is an abelian group. Associativity and commutativity
of addition follow from the respective properties on F. The zero element is the constant map
E — F, v — 0 and the inverse of a morphism f : E — F is given by —f : E > F, v — —f(v).
Similarly one checks that multiplication by scalars on Hom(E, F) is associative and distributes
from the left and from the right over addition since scalar multiplication on F has these properties.
Finally, the unit of R acts as identity on Hom(E, F) since it does so on F. Hence Hom(E, F)
carries the structure of an R left vector space.

Composition of morphisms Hom(E, F) x Hom(F, G) — Hom(E, G), (f,g) — go f is an R-bilinear
map as the following equalities for f, f1, fo € Hom(E,F), ¢, 91,92 € Hom(F,G), r € R, and ve E
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show:

(folgr+92)(v) = f((g1 + g2)(v)) = flg1(v) + g2(v)) =
=fogqi(v)+ fog)=(fogr+ fog)(v),
(fo(rg))(v) = f((rg)(v)) = f(rg(v)) =rf(g(v)) = (r(fog))(v)
(fi+ f2)og)(v) = (fi + f2)(g(v)) = fi(9(v)) + fa(g(v)) =
= fiog(w) + faog(v) = (ficg+ faog)(v),
((rf)og)(v) = (rf)(g(v)) =r(f(g(v))) =r(fog(v)) = (r(fog))(v) .

Hence R-TVS is a category enriched over the category of R-vector spaces. In particular, R-TVS
then is an additive category. O

1.2.16 Example For every tvs E and non-zero element ¢ of the ground ring R the map ¢; : E —
E, v — tv is an isomorphism of topological vector spaces by Proposition

1.2.17 Proposition and Definition A linear map f : E — F between topological vector spaces
over a valued division ring (R, | -|) maps symmetric sets to symmetric sets and circled sets to
circled sets. If in addition f is continuous, then f is bounded that means it maps bounded subsets
of E to bounded subsets of F.

Proof. Since by linearity f(tv) = tf(v) for all v € E and t € R, f(C) is symmetric (respectively
circled) if the subset C' c E is.

To verify the second claim let B < E be bounded and V < F a zero neighborhood. Then
f~1(V) is a zero neighborhood in E by continuity of f. Hence there exists an r € Rx¢ such that
B c tf~Y(V) for all t € R with [t| > 7. By linearity of f one obtains f(B) = tV for all such ¢,
so f is bounded. O

1.2.18 Remark By the proposition continuity of a linear map between topological vector spaces
implies the map to be bounded. As we will see later in this monograph, the converse does in
general not hold true unless the underlying topological vector spaces are for example normable.

Normed real division algebras and local convexity

1.2.19 The major class of topological divison rings over which topological vector spaces are
defined is formed by valued division rings (R, |-|) which carry the structure of an R-algebra such
that for all » € R and x € R the equality

[ra| = [rfo - |2]

holds true. We will therefore given them a particular name and call them normed real division
algebras. Note that the field of real numbers can be embedded into a normed real division algebra
R by the natural map R — R, r — r-1. Since R with its standard absolute value is archimedean,
so is every normed real division algebra. By the Frobenius theorem, Frobenius| (1878), there exist
only three finite dimensional real division algebras, namely the field of real numbers R, the field
of complex numbers C, and the quaternions H.
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1.2.20 Definition Under the assumption that R is a normed real division algebra one calls a
subset C'  E of an R-vector space

(i) converx if tv + (1 —t)w e C for all v,we C and t € R with 0 < ¢ < 1,
(ii) absolutely conver if rv + sw e C for all v,w € C and r, s € R such that |r|+ |s| <1,
(iii) a cone if tv e C for allve C and t e R with 0 <t < 1.

1.2.21 Lemma Let R be a normed real division algebra. A subset C of an R-vector space E
then is absolutely convex if and only if it is circled and conver.

Proof. The claim is trivial when C' = (J, so we assume that C is nonempty.

Let C' be absolutely convex. Since C' contains at least one element v one has 0 =0-v+0-v e C.
Hence rv = (1 —|r]) -0+ rv € C for all v € C and r € R with |[r| < 1. So C is circled. By
definition of absolute convexity C' is convex.

If C is circled and convex, then it contains with elements v, w also rv + sw if |r| + |s| < 1. To
see this observe first that pv € C' and ow € C' where the elements p,0 € R have been chosen so
that |o| = |o| =1, r=|r|-pand s = |s|- 0. Now if |r| + |s| = 0, then rv + sw = 0 € C since C
is circled. If |r| + |s| > 0, then

7]

5]
rv+ sw = (|r| +]s|) (M n |S|QU + B |8’Uw eC

since C' is convex and circled. Hence C' is absolutely convex. O

1.2.22 Lemma A linear map f : E — F between vector spaces over a normed real divison
algebra R maps convex sets to convex sets, absolutely convex sets to absolutely convex sets, and
cones to cones.

Proof. This an immediate consequence of the linearity of f. O

1.2.23 Lemma Let E be a tvs over a normed real division algebra R, let C, D < E be convex
and r € R. Then the following holds true.

(i) The closure C and the interior C are conves.

(ii) The sets C + D and rC are conver.

(iii) If C is absolutely conver, then so are C and C.

(iv) If C is absolutely convex, then so is rC for each r € R*.

Proof. We consider only the cases C, D # (§ because otherwise the claim is trivial.

ad (i). Let t €(0,1). Then tC' + (1 — t)C < C by continuity of the map E x E — E, (v,w)
tv+(1—t)w. Hence C is convex. Now let v, w be points of the interior of C and z = tv+ (1 —1t)w.
Then z € C, and there exists a zero neighborhood U such that v+ U < C' and w+ U < C'. Let

u € U and compute
zHu=tv+(1—-tw+tu+ (1 —thu=tlv+u)+ (1 —t)(w+u) .

Since both v + u and w + u are elements of C so is z + u by convexity of C. Hence z+ U < C
and z lies in the interior of C'.
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ad (ii). fv,we C, z,y € D and t € (0,1), then by convexity of C and D
tv+az)+(1-t)(w+y) = (tv+(1—thw) + (tz+(1—-t)y)eC+D.
Hence C' + D is convex. Similarly,
trv) + (1 = t)(rw) = r(tv + (1 = t)yw) e rC

so rC' is convex as well.

ad (iii). Let C be absolutely convex. If C' # &, then 0 € %C - %C < C, hence 0 € C. By
Lemma and (i) the claim now follows.

ad (iv). By , rC' is convex, so it remains to show that rC' is circled. Assume that v € rC.
Then v = rw for a unique w € C. Since C is circled, tw € C for every t € R with |t| < 1. Hence
tv = r(tw) € rC for such ¢t and rC is circled. O

1.2.24 Proposition and Definition The intersection of a non-empty family (C;)er of convex
(respectively absolutely convex) subsets C; < E, i € I of a topological vector space E over a
normed real division algebra R is convex (respectively absolutely convex). In particular, if A c E
is a subset, then the sets

Conv A = ﬂ B and AConv A = ﬂ B
AcBCE AcBcCE
B is convex B is absolutely convex

are conver and absolutely convex, respectively. The set Conv A is called the convex hull of A and
is the smallest convex set containing A. Similarly, AConv A is the smallest absolutely convex set
containing A. It is called the absolutely convex hull of A. The closed convex hull Conv A and
the closed absolutely convex hull AConv A of A are defined by

Conv A = ﬂ B and AConvA = ﬂ B.
AcB=BcE AcB=BcE
B is convex B is absolutely convex

These sets have the property that Conv A is the smallest closed convex subset and AConv A the
smallest closed absolutely convex subset of E containing A.

Proof. Let C be the intersection (] C; and assume that each C; is absolutely convex. Let v,w € C
iel

and r,s € R with |r| + |s| < 1. Then v,w € Cj, hence rv + sw € C; for all i € I. Therefore

rv+ sw € C and C is absolutely convex. This argument also shows that C' is convex if all C; are

convex. The rest of the claim follows as in the proof of Proposition and Definition O
1.2.25 Remark The proposition in particular entails that A is convex if and only if Conv A = A

and absolutely convex if and only if AConv A = A. Analogously, Conv A = A if and only if A is
closed and convex, and AConv A = A if and only if A is closed and absolutely convex.
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1.2.26 Lemma Let A < E be a non-empty subset of a tvs E over a normed real division algebra
R. Then

k k

Conv A = {Zti’ui ek ‘ k€N>0, V1,...0k EA, t1..., 0k ER>0, Zti = 1} R (1.2.1)
i=1 i=1
k k

AConv A = {Z”Ui eE | keNsg, v1,...0, €A, r1...,1, € R, Z Iri| < 1} . (1.2.2)
=1 =1

For the closed hulls one has

ConvA =ConvA and AConvA = AConv A .

Finally, if A is circled, then
AConv A = Conv A .

Proof. By definition, the right hand side of Eq. is convex and contains A, hence it contains
Conv A. Conversely, one shows by induction on k£ € N5y and convexity of Conv A that each
element of the form Zle t;v; with v1,...,v, € A and t1,...,t; € Rsg such that Z§=1 t; =1
is in Conv A. This proves Eq. . The proof of Eq. is similar. Observe that the
right hand side of Eq. is absolutely convex and contains A. Hence it contains AConv A.
An argument using induction on k£ € N-g and absolute convexity of AConv A shows that each
element of the form Z?zl r;v; with v1,...v, € A and r1...,7r; € R such that Zle |ri| < 1isin
Conv A. So Eq. holds true as well. The claim about the closed hulls is a consequence of
Lemma [1.2.23] For the proof of the last claim it suffices to show that Conv A is circled if A is. To
this end let v € Conv A and r € R with |r| < 1. Then one can write v in the form v = Zle tiv;
with v1,...,vx € A and tq,...,tx € Rsg, where Zle t; = 1. Hence rv = Zle t;(rv;), which is
in Conv A, since rv; € A for all ¢ because A is circled. O

1.2.27 Lemma Let A c E be a non-empty subset of a tvs E over a normed real division algebra
R.

(i) If A is convex and ty,...,t; € Rsg with k € Nog, then
k k
ZtiA: (Ztl> A.
i=1 i=1
(ii) If A is absolutely conver and r1,. .., € R with k € N>y, then
k k
DA = (Z my) A .
=1 i=1

Proof. ad (i). Obviously Zf;l t; A D (Zf;l ti> A. Let us show the converse inclusion. Without

loss of generality we can assume that ¢; > 0 for all é. Then ¢ = Zle t; > 0, so, after division by ¢,
we can reduce the claim to showing that Zlf”: t;Ac Afortq,...,t, € Ryg such that Zle t; = 1.
But Zf;l t;A c Conv A = A by Lemma [1.2.26| and convexity of A.
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ad (ii). Since by absolute convexity ;A = |r;|A for i = 1,..., k, the claim follows from O

1.2.28 Lemma Let K be one of the division rings C or H with their standard absolute values
and let E be a vector space over K. Then a convex subset C' — E is absorbent in E if and only if
it is absorbent in the realification EX.

Proof. It suffices to show the non-trivial direction. So assume that C is convex and absorbent in
the realification ER. Denote by u1,...,u, the standard basis of K over R with n = 2 or n = 4
depending on K. In particular this means u; = 1. For given v € E there now exists t € R>( such

that ) )
+—wv,...,t—wverC foralr=>t.
U Unp,

Without loss of generality we can assume ¢ > 1. Let z € K with |z| > nt. Then the vectors
€] = sgn z; MLMU, .o, Cp = SgN anLunv are elements of C'. By convexity of C and since 0 € C

e |2n|
one has BICL s ]

¢n € C. Again by convexity one concludes

Hence C' is absorbing and the claim is proved. O

1.2.29 Definition A topological vector space E over a normed real division algebra R for which
Axiom [LCVS| below holds true is called a locally convex topological vector space, a locally convex
vector space or shortly a locally convex tvs.

(LCVS) The vector space topology on E has a base consisting of convex sets.

1.2.30 Remark For better readability, we often say locally convex topology instead of locally
convex vector space topology.

1.2.31 Proposition The locally convex topological vector spaces over a normed real division
algebra R together with the continuous linear maps between them form a full subcategory of the
category R-TVS of topological R-vector spaces. It is denoted R-LCVS.

Proof. This is clear by definition. O

1.2.32 Proposition and Definition The filter of zero neighborhoods of a locally convex topo-
logical vector space E over a normed real divison algebra R has a filter base B with the following
properties:

(i) For each V € B there exists U € B such that U + U < V.
(ii) Ewvery element of B is a barrel that means is absolutely convez, closed and absorbing.
(iii) Letre R*. Then V € B if and only if rV € B.

Conversely, if B is a filter base on an R-vector space E such that holds true and such that each
element of B is absolutely convex and absorbing, then there exists a unique locally convex topology
on E such that B is a neighborhood base of the origin. It is the coarsest among all translation
mwvariant topologies for which B is a set of zero neighborhoods and is called the locally convex
topology generated or induced by B.
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Proof. Let E be a locally convex tvs. Let B be the collection of all barrels which are at the same
time zero neighborhoods. Let V be an element of Uy, the filter of zero neighborhoods. Since E is
(T3) by Proposition there exists a closed zero neighborhood V, such that V, < V. By local
convexity of E there exists a convex zero neighborhood V;, with V;, < V,. By Proposition [1.2.13]
there exists a circled zero neighborhood V, with V.,  V;. The closed convex hull U = Conv V,
then is a barrel contained in V. Since it is a zero neighborhood it is an element of B, and B is
a filter base of Uy. This proves

To verify let V' € B and observe that by continuity of addition there exist zero neighborhoods
Uy and U; such that Uy + Uy < V. Choose U € B such that U c Uy nUs. Then U + U c V.

Claim holds true since multiplication by an element r € R* is a homeomorphism which
preserves circled and convex sets.

The remaining claim follows immediately from Proposition[1.2.13|and the observation that a real
division algebra is archimedean. O

1.2.33 Corollary Let 8§ be a non-empty set of absolutely conver and absorbent subsets of a
vector space E over a normed real divison algebra R. Then the set

B:{r (M BePE)|FePus), 53 & reRX}
BeF

consists of absolutely convexr and absorbent subsets of V and is a base of the filter of zero neigh-
borhoods of a locally convex topology T on E uniquely determined by that property. This topology
is the coarsest among all vector space topologies for which 8 is a set of zero neighborhoods. The
topology T is called the locally convex topology generated or induced by 8.

Proof. The intersection of finitely many absolutely convex and absorbing sets is non-empty and
again absolutely convex and absorbing by Lemma/|1.2.12 and Proposition and Definition|1.2.24

By Lemma (1.2.12 and Lemma [1.2.23] the scalar multiple of an absolutely convex and ab-
sorbing set again has these properties whenever the scalar is invertible. Hence each element

of B is absolutely convex and absorbing. Given two elements C, D € B there exist non-empty
F,G € Psu(8) and r,s € R* such that C =r (| Band D = s (| B. Without loss of generality

BeF Be§
one can assume that |r| <|s|. Then A=r (| BeBand A=Cnrs'Dc Cn D since D is
BeFu§

balanced and |rs™!| < 1. Hence B is a filter base consisting of absolutely convex and absorbent
sets. Moreover, %C + %C c C for every C' € B by absolut convexity. By Proposition the
filter base B therefore generates a unique locally convex topology 7 for which B is a base of the
filter of zero neighborhoods. Moreover, T is the coarsest translation invariant topology so that
B is a set of zero neighborhoods. This implies in particular that § is a set of zero neighborhoods
for 7. Now let T’ be a vector topology such that each element of § is a zero neighborhood. Then
finite intersections of elements of § are zero neighborhoods with respect to 77 and therefore also
all elements of B. Since T’ is translation invariant one concludes that T is coarser than T’ and
the claim is proved. O

83



I1.1. Topological Vector Spaces 1.3. Seminorms and gauge functionals

1.3. Seminorms and gauge functionals

1.3.1 Throughout the rest of this chapter the symbol K will always stand for the field of real
numbers R, the field of complex numbers C or the division algebra of quaternions H. We assume
these division algebras to be equipped with their standard absolute values | - |. Moreover, vector
spaces are assumed to be defined over the ground field K unless mentioned differently and are
always assumed to be left vector spaces.

Seminorms and induced vector space topologies
1.3.2 Definition By a seminorm on a vector space E one understands a map p : E — R with
the following properties:
(NO) The map p is positive that is p(v) = 0 for all v € E.

(N1) The map p is absolutely homogeneous that means

p(rv) = |r|p(v) for all ve E and r € K.

(N2) The map p is subadditive or in other words satisfies the triangle inequality

p(v +w) < p(v) + p(w) for all v,w € E.

A seminorm is called a norm if in addition the following axiom is satisfied:
(N3) For all v € E the relation p(v) = 0 holds true if and only if v = 0.

A vector space E equipped with a norm | - || : E — Ry is called a normed vector space.

1.3.3 Let us introduce some useful further properties a map p : E — R can have. One calls such
a map p

(1) positively homogeneous if p(tv) = tp(v) for all t € Ro¢ and all v € E,

(2) sublinear if p(tv + sw) < tp(v) + sp(w) for all t,s € Ry and all v,w € E, and

(3) convez if p(tv + sw) < tp(v) + sp(w) for all t,s € Ryp with ¢t + s = 1 and all v,w € E.
1.3.4 Lemma For a real-valued map p : E — R on a vector space E the following are equivalent:
(i) p is sublinear.

(ii) p is positively homogeneous and convex.

(iii) p is positively homogeneous and subadditive.
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Proof. Let p be sublinear. Then p is subadditive by definition. Subadditivity implies p(0) <
p(0) + p(0), hence p(0) = 0. By sublinearity

p(0) =p(0-0+0-0)<0-p(0)+0-p(0)=0,

so p(0) = 0. We show that p is positively homogeneous. Applying sublinearity again one checks
for v € E and t = 0 that

p(tv) = p(tv +0-0) < tp(v) +0-p(0) = tp(v) ,

so p is positively homogeneous and the implication |(i)| = follows. If p is positively
homogeneous and subadditive, then for v,w e E and ¢,s > 0 with t + s = 1

p(tv + sw) < p(tv) + p(sw) < tp(v) + sp(w),

so p is convex. This gives the implication |(iil)] = If p is positively homogeneous and
convex, then one computes for v, w e E and t,s > 0 with t + s > 0

w) = (e 9) (pl) + op(w)) = o)+ splw)

(tv + sw) = (t + s) t +
v Sw) = S —
p p t+ s t+s

t+ s t+ s

Since p(0) = %i\r%p(tO) = %i\rgtp(O) = 0 by positive homogeneity, p then has to be sublinear and
one obtains the implication == O

1.3.5 Lemma Let p: E — R be a real-valued map defined on a vector space E over K.
(i) Ifp:E — R is positively homogeneous, then p(0) = 0.
(ii) Ifp:E — R is subadditive, then p(0) = 0 and for all v,w € E

Ip(v) — p(w)| < max{p(v —w), p(w —v)} .

(iii) Ifp: E — R is convex, then the sets B, . := {v e E | p(v) < e} and B, := {ve E | p(v) < &}
are convex for all € > 0.

(iv) If p is sublinear, then By . and B, are convex and absorbent for all € > 0.
Proof. /). As al =i =i =0.
roof. ad (i). As already observed, p(0) t{%p(t()) tl\i%tp(o) 0
ad (ii). Note that by subadditivity
p(0) < p(0) +p(0), p(v) —p(w) <pv—w), and p(w)—p(v) <plw—2v).

This entails

ad (#i). Let v,we {ve E|p(v) <e}and 0 <t < 1. Then, by convexity of p,
p(tv+ (1 —t)w) <tp(v) + (1 —t)p(w) <te + (1 —t)e =¢.

Hence tv + (1 —t)w € {v € E | p(v) < e}. The proof for {v e E | p(v) < €} is analogous.
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ad (iv). Convexity of the sets B, . and B, . holds by |(iii)l Moreover, B, . < B, . by definition.
Hence it suffices by Lemma [1.2.28| to show that B, . is absorbent in the realification ER. Since
p is positively homogenous by Lemma [1.3.4]and 0 < p(v) + p(—v) for all v € E, one concludes
that for allte R and v e E

[p(tv)] < [t} max{p(v), p(-v)} -

and B, . is absorbent in ER. ]

Hence tv e B, if 0 <t < max{p(v)?p(_v)}+17

1.3.6 Definition If p : E — R is a seminorm on a vector space E, we denote for every v € E
and € > 0 by B, .(v) the (open) e-ball associated with p and with center v that is the set

Bpe(v) = {weE|p(w—v) <e}.

The closed e-ball associated with p and with center v is defined as

Bpe(v) = {weE|plw—v) <e}.

The positive number ¢ is called the radius of the ball. In case the center of the ball is the origin,
we often write B, . and B, for B, .(0) and B, .(0), respectively. If in addition the radius equals
1, then we usually write only B, and B, and call these sets the open respectively the closed unit
ball. More generally, for the particular radius 1 we denote the corresponding balls by B, (v) and
B,(v) and call them the open respectively closed unit balls with center v. When by the context
it is clear which seminorm p a ball is associated with we often do not mention p explicitely. This
is in particular the case when the underlying vector space is a normed vector space.

If P is a finite set or a finite family of seminorms on E we define the open and closed e-multiballs
with center v by
Bpe(v) = {we E| p(w—v) < e forall pe P}

and B
Bpe(v) = {weE|p(w—v) <eforalpe P},

respectively. As before, we abbreviate Bp. = Bp.(0) and Epyg = Ep7a(()).

1.3.7 Remark For convenience, we will also use the symbols B, . and Epﬁ to denote the sets
{v eE ’ p(v) < 6} and {v eE ‘ p(v) < 6}, respectively, when p : E — R is just a real-valued
convex map on the vector space E. Note that for such a p the set {v eE { p(v) < O} might be
non-empty. But as we have shown in Lemma m the sets B, . and B, . associated to a convex
p share with the the balls associated to a seminorm several nice properties like convexity.

1.3.8 Proposition Let E be a K-vector space, and P a finite set of seminorms on E. Then, for
every € > 0 and v € E, the e-multiballs Bp.(v) and Bp.(v) are convex. The e-multiballs Bp,.
and Bp. centered at the origin are absolutely conver and absorbent.

Proof. Axiom |(N1)| immediately entails that Bp. and Bp. are circled. Axiom |(N2)| together
with |(N1)[ entails that the sets Bp.(v) and Bp.(v) are convex. Namely, if wi, w2 € Bp.(v) and
t € [0,1], then one has for all seminorms p € P

ptwr + (1 —twe —v) <tp(wy —v)+ (1 —=t)p(we —v) <te+(1—t)e=¢
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and likewise p (twy + (1 — t)wy — v) < € for all wy,ws € Bp.(v) and p € P.

Now let v € E and € > 0 be given. Put t, = p(vsﬁ for every p € P and ty = max{t, | p € P}.

Then one has for all t € K with |[t| > to and for all pe P

p <1v> < ]ﬁp(v) <e,

hence v € tBp.. So Bp, is absorbing. Since @p}e contains the absorbing set Bp,, it is absorbing
as well. O

1.3.9 Proposition and Definition Assume to be given a set Q) of seminorms on a vector space
E. Let Pgn(Q) be the collection of all finite subsets of Q. A base of a topology on E then is given
by

B = {Bpe(v) | PePsn(Q), veE, e >0} .

The topology T generated by B is called the topology generated, induced or defined by Q. More-
over, T is a locally convex vector space topology on E. It coincides with the coarsest translation
mwvariant topology on E such that each seminorm in Q) is continuous.

Proof. Consider the set By of all multiballs Bp, with P € Pg,(Q) and € > 0 centered at the origin.
Clearly, By is a filter base since for Py, Py € Pg,(Q) and €1, 2 > 0 the multiball Bp, |, p, min{e, ¢2}
is contained in Bp, ., n Bp, .,. Moreover it consists of absolutely convex and absorbing sets by
Proposition [1.3.8

By a similar argument one shows that B is base of a topology. Let Bp, ., (v1),Bp, c,(v2) € B
and v € Bp, ., (v1) N Bp, o, (v2). Let ¢ be the minium of the numbers €1 — pi(v — v1) and
g9 — pa(v — v2), where p; runs through the elements of P; and ps through the ones of P». Then
e > 0and Bp up,c(v) € Bp o (v1) N Bp, e, (v2), and B is a base for a topology T indeed. By
construction, By then is a base for the filter of zero neighborhoods and each element of By is
open in T. Moreover, each closed multiball Bp.(v) is closed in T since the complement E\Bp,(v)
contains with w also the open multiball Bps(w), where § = min{p(v — w) — ¢|p € P}.

We now prove continuity of addition with respect to T. Let v1,vs € E, P € P5,(Q), and £ > 0.
Since the triangle inequality holds for every seminorm in F', one has

Bp,%(vl) + BR%(UQ) C Bpﬁ(vl + ’Ug) ,

which entails continuity of addition at each (v1,v2) € E x E. Next consider multiplication by
scalars and let A € K and v € E. Again let P = {p1,...,pn} € Pan(Q) and ¢ > 0. Let
C1 =sup{p;(v) [1 < j<n}+1, C2 =|A+1and put 6; = min{l, 35} and 02 = 55;. Then
one obtains by absolute homogeneity and subadditivity of each seminorm

pj(pw — Av) < |p|pj(w —v) + |p— Al pj(v) for all pe K and w € E,

hence
Bgl ()\) . IBP752 (U) c IBP’E(A . U) y

where Bs, (A) = {u € K | |4 — A| < d1}. This shows continuity of scalar multiplication at each
(A\,v) e K x E, and T is a vector space topology.
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Since each of the base elements Bp. € By is convex, Axiom [LCVS| holds true as well and the
topology T is locally convex.

Every seminorm p € @ is continuous with respect to the topology T since for all a < b the
preimage p~!((a,b)) = B,;\B,, is open in T. Now let 77 be a translation invariant topology
on E for which every seminorm p € @ is continuous. In that topology Bg is a set of zero
neighborhoods. As shown before, every element B € B is absolutely convex, absorbing and
satisfies %B + %B < B. Hence by Proposition and Definition the topology 7’ is finer
than the locally convex topology generated by Bgy. But the latter topology coincides with T by
construction. This shows the last part of the claim and the proof is finished. O

Gauge functionals and induced seminorms

1.3.10 As we have seen, any vector space with a topology defined by a family of seminorms on
it is a locally convex topological vector space. The converse also holds true. The fundamental
notion needed for the proof of this is the following.

1.3.11 Definition Let E be a vector space and A < E absorbent. Then the map
pa:E > Rep, v pa(v) zinf{teR>0 ‘ UEL‘A}
is called the gauge functional, the Minkowski functional or the Minkowski gauge of A.

1.3.12 Remark By definition of an absorbent set, {t € Rog | v E tA} is non-empty whenever
A c E is absorbent. Hence p4 is well-defined for such A.

1.3.13 Proposition The Minkowski gauge pa : E — Rsq of an absorbent subset A of a vector
space E has the following properties.

(i) The gauge functional is positively homogeneous that is pa(tv) = tpa(v) for all t € R~g and
allv e E.

(ii) If A is convex, then pa is subadditive and

B,(v) = U tAc Ac ﬂtAzEg(v).

O<t<1 1<t

(iii) If A is absolutely convez, then pa is a seminorm on E.

Proof. 1f t > 0, then tv € sA for some s > 0 if and only if v € A. Hence {s € Rog | tv € sA}
and t{s eR.p|vE SA} coincide for all ¢t > 0, so |(i)| follows.

Assume that A is convex. Let v,w € E and € > 0. Then there exist ¢t > pa(v) and s > pa(w)
such that v € tA, w e sA,t < pa(v)+5§and s < pa(w)+ 5. By convexity of A and Lemma
v+wetA+ sA=(t+s)A. Hence pa(v+w) < (t+5) <pa(v) +pa(w) +e. Since € > 0 was
arbitrary, pa(v+w) < pa(v) + pa(w) and p4 is subadditive. If v € tA for some ¢ with 0 <t < 1,
then py(v) <t < 1 by definition. Conversely, if p4(v) < 1, then there exists a ¢t > 0 such that
t <1 and v € tA. Hence the equality B,(v) = (-, tA follows. Since A is absorbing, 0 is an
element of A. By convexity of A one therefore concludes tA = (1 —t){0} +tA < A whenever 0 <
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t < 1. For t > 1 this shows 14 < A, hence A = tA. So the relation ( Jy_,_, tA = A = (), tA
is proved. Now assume that v € tA for all ¢ > 1. Then py(v) < 1 by definition. If conversely

pa(v) < 1, then there exists for each € > 0 an s > 0 such that pg(v) < s,vesAand s <1+e.
Hence, for t > 1+ ¢ by Lemma [[.2:27)and 0 € A4,

veEsA=sA+ (t—s){0} csA+ (t—s)A=1tA.
Since £ > 0 was arbitrary, v € tA for all ¢ > 1 follows. So one obtains the equality (),_,tA =
B,(v), and is proved.

To verify recall that A is circled whenever A is absolutely convex. This entails for r € K,
v € E and absolutely convex A

pa(rv) = inf {t € Ryp ‘ ry e tA} = inf {t € Ryg ‘ |r|v e tA} = pa(|r|v) = |r|pa(v) ,
where for the last equality we have used O

1.3.14 Lemma Let A and B be absorbent subsets of a vector space E. Then the following holds
true.

(i) pia(v) = pa(t~tv) for allt e K* and v e E.

(i) If B< A, then psa < pp.

(iii) If A is convex, then v € tA for allve E and t > pa(v).
(

iv) If A and B are convez, then the intersection A n B is absorbent and convex and po~p =
sup{pa, pB}, where sup{pa, pp}(v) = sup{pa(v),pp(v)} for all v e E.

Proof. ad (i). If t € K is invertible, then v € tA if and only if t v € A.

ad (it). Let v e E and € > 0. Then there exists ¢t with pp(v) <t < pp(v) + € such that v € tB.
By B < A this implies v € tA, hence ps(v) < t < pp(v) + e. Since € > 0 was arbitrary, the
estimate py < pp follows.

ad (1). By definition of the Minkowski gauge there exists s € R such that pa(v) < s <t and
v € sA. By convexity of A one concludes v = jv + (1 — %) -0 € sA, hence v e tA.

ad (iv). The intersection of convex sets is convex, so AnB is convex. Let v € E and choose r4 = 0
and rp > 0 such that v € tA for all t > r4 and v € sB for all s > rg. Then v € (tA) n (tB) =
t(A n B) for all t > max{ra,rg}, so A n B is absorbent. One has ps~p = sup{pa,pnp} by
[(i)}] To show the converse inequality assume that v € E and ¢ > sup{pa(v),pp(v)}. Then
vEtAntB =1t(An B), which implies pa~p(v) < t. Hence ps~p(v) < sup{pa(v),pp(v)} since
t > sup{pa(v),pp(v)} was arbitrary. O

1.3.15 Lemma Let p: E — R be a sublinear map on a vector space E and A  E convex. If
B,c AcB,,

then the gauge functional pa coincides with sup{p,0}. If p is even a seminorm, then p = p4.
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Proof. Let p : E — R be sublinear. Observe that then B, is absorbent by Lemma
Hence A must also be absorbent by assumption, so the associated Minkowski gauge p4 is posi-

tively homogeneous by Proposition |1.3.13

Assume now that there exists v € E such that max{p(v),0} < pa(v). By positive homogeneity of
p and p4 one can achive by possibly multiplying v by a positive real number that max{p(v), 0} <
1 < pa(x). The first inequality entails v € B,, the second v ¢ B, which is a contradiction. Next
assume that there exists v € E with pa(v) < max{p(v),0}. As before one can then achieve that
pa(v) < 1 < max{p(v),0} for some v € E. By the first inequality one concludes v € A, by the
second v ¢ A. This is a contradiction. So the equality max{p(v),0} = pa(v) holds for all v € E.

In case p is a seminorm, then p(v) = 0 for all v € E and the second claim follows by the first. [
1.3.16 Proposition Let E be a topological vector space, and p : E — R be sublinear. Then the
following are equivalent.

(i)  The map p is continuous in the origin.

(ii) The map p is uniformly continuous.

(iii) The map p is continuous.

(iv) The unit ball B, is a zero neighborhood.

Proof. Let us first show = To this end fix € > 0. By assumption there exists a zero

neighborhood V' < E such that |p(v)| < € for all v € V. By possibly passing to V n (=V') one
can assume that V' is symmetric. Lemma now implies

Ip(v) — p(w)| <e forallv,weV .

Hence p is uniformly continuous. The implications = and = are trivial.
It remains to prove = . Assume that B, (0, 1) is a zero neighborhood. Then there
exists a symmetric zero neighborhood V' contained in B,(0,1). Since p(0) = 0 one concludes by

Lemma

Ip(v)| < max{p(v),p(—v)} <1 forallveV .

But this implies |p(v)| < € for all v € eV and € > 0, so p is continuous at the origin. O

Normability

1.3.17 Definition A topological vector space E is called seminormable if its topology is gener-
ated by a single seminorm p : E — Rsq. If the topology on E coincides with the vector space
topology generated by a norm | - |, then one calls E normable.

1.3.18 Theorem (Kolmogorov’s normability criterion) A topological vector space E is normable
if and only if it is a|(T1) | space and possesses a bounded convex neighborhood of the origin.
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1.4. Cauchy filters and completeness

1.5. Function spaces and their topologies

1.5.1 Proposition Let X be a topological space and (Y,d) a metric space. Then the following
holds true.

(i) The space
BX,Y)={f:X>Y |IyeYIC>0VzeX: d(f(z),y)<C}
of bounded functions from X to Y is a metric space with metric

0:B(X,Y) x B(X,Y) - Rz, (f,9) — Slel)rgd(f(fc),g(x)) :

(ii) If (Y,d) is complete, then (B(X,Y), 0) is so, too.

(iii) The space
Ch(X,Y)=C(X,Y)nB(X,Y)

of continuous bounded functions from X to'Y is a closed subspace of B(X,Y).

Proof. Note first that by the triangle inequality there exists for every f e B(X,Y) and ye Y a
real number Cy, > 0 such that

d(f(z),y) <Cj,p forallzeX .

ad (i). Before verifying the axioms of a metric for ¢ we need to show that ¢ is well-defined
meaning that sup,cx d(f(z),g(z)) < oo for all f,g € B(X,Y). To this end fix some y € Y and
observe using the triangle inequality that

d(f(z),9(z)) <d(f(z),y) +d(y,9(z)) < Cpy+ Cyqy forallzeX .

Since furthermore d( f(z), g(z)) = 0 for all z € X, the map g is well-defined indeed with image in
R=o. If o(f,g) = 0, then d(f(ac),g(a:)) =0 for all z € X, hence f = g. Obviously, o is symmetric
since d is symmetric. Finally, let f,g,h € B(X,Y) and check using the triangle inequality for d:

o(f.9) = ilel)rgd(f(rv),g(w)) < sup (d(f(x), h(@)) + d(h(z),9(x))) <

< :21)1}) d(f(m), h(m)) + 23)}3d(h(3}),g(m)) =d(f,h) +d(h,g) .

Hence p is a metric.

ad (ii). Assume (Y, d) to be complete and let (f,)neny be a Cauchy sequence in B(X,Y). Let
€ > 0 and choose N, € N so that

O(fns fm) <e forallmym=>=N .
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Then for every x € X the relation
d(fn(2), fm(x)) <e for all n,m = N, (1.5.1)

holds true, so (fn(z))nen is a Cauchy sequence in Y. By completeness of (Y, d) it has a limit
which we denote by f(z). By passing to the limit m — oo in ((1.5.1)) one obtains that

d(f(z), fn(x)) <e forallze X andn > N. . (1.5.2)
Using the triangle inequality one infers from this for an element y € Y which we now fix that
d(f(2),y)) < d(f(@), fz, (2))) +d(fn, (@),y) ST+ Cy gy -
Hence f is a bounded function. Moreover, entails that
o(f, fn) = su)lgd(f(x), fa(z)) <e foralln>= N,
ze

80 (fn)nen converges to f.

ad (ii1). We have to show that the limit f of a sequence (fy,)ne of functions f,, € C,(X,Y’) which
converges in (B(X,Y), o) has to be continuous. To this end let € > 0 and choose N; € N so that

o(fn, ) < g forall n > N, .
Let zo € X. By continuity of fy. there exists a neighborhood U < X of  so that

forallze U .

d(fn.(x), fN.(20)) <

W ™

By the triangle inequality one concludes that

d(f(x), f(w0)) < d(f(x), f.(x)) + d(fn. (@), fn.(20)) + d(fn.(20), f(20)) <€

for all x € U. Hence f is continuous at xg. Since g € X was arbitrary f, is a continuous map,
hence an elemnt of C,(X,Y).

O]

1.5.2 Proposition Let X be a topological space and K the division algebra of real or complex
numbers or of quaternions. Then the following holds true.

(i) The space B(X,K) of bounded K-valued functions on X can be expressed as
BX,K)={f: X —>K|3IC>0Vze X : |f(z)|<C} . (1.5.3)

It carries the structure of a K-algebra by pointwise addition and multiplication of functions
and becomes a Banach algebra when equipped with the supremums-norm

|+ loo = B(X,K) — K, fHSgg!f(w)! :
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(ii) The subspace Ch(X,K) < B(X,K) of bounded continuous K-valued functions on X is a
closed subalgebra of (B(X,K),| - |»), so a Banach algebra as well when endowed with the
supremums-norm. For X compact this means in particular that the algebra (C(X,K), | ||)
1s a Banach algebra.

Proof. Eq. is obvious since the distance of two elements a, b € K is given by d(a, b) = |a—b|,
so in particular d(a,0) = |a|. Let f,g € B(X,K) and choose Cy,Cy = 0 so that |f(z)] < Cy
and |g(z)| < C, for all x € X. Then, by the triangle inequality and absolute homogeneity of the
absolute value,

[f(@) +9(@)] < Cp + Gy, |af(x)] <la|Cy, and |f(z)-g(x)] < Cf-Cy .

Hence the sum and the product of two bounded functions are bounded and so is any scalar
multiple of a bounded function. Therefore, B(X,K) is an algebra over K. Using the triangle
inequality and absolute homogeneity of the absolute value again one verifies that | fo is a norm
on B(X,K) indeed and that it fulfills | fg|e < | flleo - [9]leo for all f,g € B(X,K). Furthermore,
by definition, |f|s = o(f,0) for all f € B(X,K), where ¢ is defined as in Proposition [1.5.1]
Since (B(X,K), p) is a complete metric space, (B(X,K),|| - |«) therefore is a Banach algebra.
This proves the first claim.

For the second observe that for f, g € Cp(X,K) and a € K the sum f + g, the scalar multiple af,
and the product f-g are elements of C,(X,K) again. To verify this let z € X and € > 0. Choose
neighborhoods U; and Uy of = so that

) — f(@)] < mm{g : } for y € U

€
27 Jal + 17 2(|g(z)| + 1)
and

€ €
—g(x) <11, =, ————— for ye Us .
Then for all y € Uy n Us

(F+9)y) = (f+9) @) < |f(y) = f@)] + lg(y) —g(@)| <€,
[(af)(y) = (af) (@) <lal - [f(y) = f(z)| <€,
I(f-9)) = (f -9 @) < lgW)| - /() — @)+ 1f(@)] - [(9(y) —g(x)] <.
This means that f + g, af and fg are continuous in x, hence elements of C,(X,K) since x € X

was arbitrary. So C,(X,K) is a subalgebra of B(X,K). By Proposition one knows that
Ch(X,K) is a closed subspace of B(X,K). The rest of the claim is obvious. O

S

<|
<|
< |

1.5.3 As the next step, we introduce seminorms and their topologies on spaces of differentiable
functions defined over an open set 2 < R™. We agree that from now on 2 will always denote
in this section an open subset of R™. For any differentiability order m € N u {00} the symbol
C™(Q) stands for the space of m-times continuously differentiable complex valued functions on

Q. Fori = 1,...,n we denote by z' : R®” — R the i-th coordinate function and, if m > 1,
by 0; : €™(Q) — €™~ 1(Q) the operator which maps f € €™(Q) to the partial derivative §,£~
More generally, if @ € N" is a multiindex satisfying || = a1 + ..., < m, then we write
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0% 1 C™(Q) — €™ lel(Q) for the higher order partial derivative which maps f € €™() to

slal
scalar multiples of m-times differentiable functions are again m-times differentiable, hence €™ ()
forms a C-algebra. Now we define C™(£2) to be the space of continuous functions on the closure Q
which are m-times continuosly differentiable on €2 so that each of its partial derivatives of order
< m has a continuos extension to §. Since the operators ¢; are linear and also derivations by
the Leibniz rule, €™(Q) is a subalgebra of €™(Q). In general, these algebras do not coincide as
for example the function % on R- g shows. It is an element of €*(R~() but can not be extended
to a continuous function on R, so is not an element of C*(R~¢).

Recall that the sum and the product of two m-times differentiable functions and

If X < R" is locally closed which means that X is the intersection of an open and a closed susbet
of R™, then define €™ (X) as the quotient space C"(€2)/Jx(€2), where 2 = R™ open is chosen so
that X = X n Q and where Jx denotes the ideal sheaf of all m-times continuously differentiable
functions vanishing on X that is

Ix(Q) ={feC™(Q) | flx =0} .

Using a smooth partition of unity type of argument one shows that C"(X) does not depend on
the particular choice of the neighborhood € in which X is relatively closed and that €™(X) can
be naturally identified with the space of continuous functions on X which have an extension to
an element of €™ ().

1.5.4 Proposition Let Q < R™ be open and bounded and m € N=q. Then C™(Q) equipped with
the norm B
|- lom : €"(Q) = Rzo,  f—

1.6. Summability

1.6.1 Definition Assume to be given a locally convex topological vector space V over the field
K of real or complex numbers. Let (v;);er be a family of elements of V. Let F(I) be the set of
finite subsets of I and note that it is filtered by set-theoretic inclusion. The family (v;);er then

gives rise to the net <Zi€J vi> . One calls the family (v;)ier summable to an element v € V
€

if the net <Zze J vi>J %) converges to v. In other words this means that for every convex zero
€
neighborhood U < V and e > 0 there exists an element Jy. € F(I) such that for all finite sets

J with Jy. cJc I
pU (U—Zm) <€.
€]

As before, py denotes here the gauge of U. If V is Hausdorff, the limit v of a summable family
(v;)ier is uniquely determined, and one writes in this situation

v = Z Vi .
1€l
We denote the space of summable families in V over the given index set I by ¢}(I,V). For E = C

we just write £*(I) instead of £*(I,C). If in addition the index set coincides with N, we briefly
denote ¢! (N) by ¢

94



I1.1. Topological Vector Spaces 1.6. Summability

1.6.2 Proposition (Cauchy criterion for summability) Let V be a complete locally convex
topological vector space. A family (v;)ier of elements of V then is summable to some v € V if and
only if it satisfies the following Cauchy condition:

(C) For every convex zero neighborhood U < V and € > 0 there exists an element Jy. € F(I)
such that for all K € F(I) with K n Jy. = & the relation

pu (2 Uz’) <é
ieK

Proof. By completeness of V it suffices to verify that the net (ZieJ vi>J ¥ is a Cauchy net if
€

and only if condition (C) is satisfied. Recall that one calls (ZZE 7 vi>J _ a Cauchy net if for
€

every convex zero neighborhood U < V all € > 0 there exists an element Jy. € F(I) such that
for all J, J" € F(I) containing Jy. as a subset the relation

pU (Z“i_Z”i) <e

i€ eJ’

holds true.

holds true. But that is clearly equivalent to condition (C). t

1.6.3 Several other notions of summability have been introduced in the analysis and functional
analysis literature. These are mainly either used to establish summability criteria or are used
in the study of topological tensor products and nuclearity of locally convex topological vector
spaces, see |Grothendieck (1955); Pietsch| (1972)). In the following we define these further notions
of summability and study their properties. The symbol V hereby always stands for a locally
convex tvs, I always denotes a nonempty index set, and F(I) the set of its finite subsets.

1.6.4 Definition A family (v;)er in V is called weakly summable to v € V if for every continuous
linear form « : V — K the net (Zie] a(vﬁ)J _ converges in K to «a(v). In other words this
€

means that for every o € V/ and € > 0 there exists a finite set Jae © I such that for all finite
sets J with J,. < J I

<e.

a(v) — Y a(v)

jed

The set of all weakly summable families in V with index set I is denoted ¢![I, V].

1.6.5 Definition A family (v;)e; in V is called absolutely summable if for every circled convex
zero neighborhood U < V there exists some C' > 0 such that

Dipy(v) <C forall J e F(I) .
e

We denote the set of all absolutely summable families in V by ¢£1{I, V}.

95



I1.1. Topological Vector Spaces 1.6. Summability

1.6.6 Proposition A family (v;)ier < V is absolutely summable if and only if for every element
U of a basis of circled convex zero neighborhoods there exists a C' = 0 such that

ZPU (v)) <C  forall JeF(I) .
ieJ

Proof.

1.6.7 Definition A family (v;)er in V is called totally summable if there exists a bounded
absolutely convex subset B < V and a C > 0 such that

Ypp(vi) <C forall JeF(I).
eJ

We write ({1, V) for the set of all totally summable families in V.

Summable families of complex numbers

1.6.8 Lemma (cf. (Pietsch, 1972, Lem. 1.1.2)) Let (z)ier be a family of complex numbers
for which there exists a positive real number C > 0 such that

e

ieJ

<C foral JeF() .

Then one has the estimate
DIzl <4C for all J e F(I) .
e

Proof. We assume first that all z; are real. Then let I the set of all indices ¢ € I such that
z; =2 0, and I~ the set of all ¢ € I such that z; < 0. Then, for all finite J < I

Dlzl= D lal+ D) lal=| D) = Doz

e ieJnIt ieJnI— ieJnI+ ieJnI—

+ <2C.

In the general case decompose z; into real and imaginary parts x; = Rez; and y; = Jmz;. By the
triangle inequality one obtains for all finite J < [

Dzl < D fwl + ) lwil < 4C

ieJ i€ e [

1.6.9 Proposition For a family (z;)icr of complex numbers the following are equivalent.
(i)  The family (z;)ier is summable.

(i1) The family (|zi|)ier is summable.

(iii) The family (z;)ier is absolutely summable.

(iv) There exists some C > 0 such that Y, ; |z| < C for all J € F(I).
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In case that one hence all of the conditions are fulfilled, the estimate

Zzi < Z\Zz|

el el

holds true.

Proof. Assume that (z;)es is absolutely summable. Since C is normed with norm given by the
absolut value this just means that there exists some C' > 0 such that },_;|z| < C for all
J € F(I). Hence the supremum ¢ = sup {> ;. ;|| | J € F(I)} exists and is < C. For given ¢ > 0
choose J. € F(I) such that
c—e< Z|zi|<c.
i€Je

Then one has for all K € F(I) with K n J. = &

>

ieK

<D al<e.

ieK

Hence (D, 2i) JeF (1) is a Cauchy net, so has to converges by completeness of C. This proves
summability of (z;)er.

Vice versa, assume now that (2;);er is summable. Then (3, ; %) JeF() is a Cauchy net. Hence
there exists an element J; € F(I) such that for all K € F(I) with K n J; = ¢J the inequality

>

ieK

<1

holds true. Let C'=>,._; |z|. Then one has for all J € F(I)

i€y

Zzi <1+C

e

<22i+

ieJ\J1

> -

’iEJﬁJ1

By the preceding lemma the set of partial sums ). ; |2;|, where J runs through the finite subsets
of I, is then bounded by 4 + 4C hence (z;);er is absolutely summable. O

Summability in Banach spaces
1.6.10 Proposition Let V be a normed vector space. For a family (v;)ier of elements in V the
following are equivalent:
(i)  The family (v;)ier is absolutely summable.
(i1) The family (||vi])ier is summable.
(iii) There exists some C > 0 such that Y, |lvi| < C for all J € F(I).

If V is even a Banach space, these conditions are all equivalent to
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(iv) The family (v;)ier is summable.
Proof. and are equivalent by Proposition Assume now that |(i)| holds true. O

to do: Carl Neumann series

Properties of and relations between the various summability types

1.6.11 Theorem Let I be a non-empty index set. Then the spaces £*(I, V) of summable families,
I, V] of weakly summable families, (*{I,V} of absolutely summable families and (*{I,V) of
totally summable families in E are all subvector spaces of the product vector space E' = Ilie1E.
Furthermore one has the following chain of inclusions:

(I, VY c I, VY and 011, V) < 0MI,V] .
If E is complete, then one even has
(M1, VY c NI, V)

Proof. Now let (v;) be a summable family and o : V — K a continuous linear form.

Let U be an absolutely convex zero neighborhood. Then U absorbes B, so there exists r > 0
such that B < rU. Hence ]

1.7. Topological tensor products

1.7.1 Definition (cf. (Grothendieck, 1955, Chap. I, § 3, n°3)) Let V and W be two lo-
cally convex topological vector spaces over the ground field K. A locally convex vector topology
7 on the (algebraic) tensor product V®W is called compatible with the tensor product structure,
an admissible tensor product topology or just admissible if the following conditions hold true:

(ATPT1) The canonical map V x W — V ®; W is seperately continuous that is for each v e V
and each w € W the linear maps

WV Wy—-ov®y and VoV W, z—2xQ@w

are continuous where V ®; W denotes the vector space V® W equipped with 7.

(ATPT2) For all linear maps a € V' and 8 € W’ the canonical linear map map a®p : V®, W — K
is continuous.

(ATPT3) For every equicontinuous subset A © V' and equicontinuous subset B ¢ W’ the set
{a® B | ae A& B e B} is an equicontinuous subset of the topological dual of V®, W.

The locally convex vector topology 7 is called strongly compatible with the tensor product struc-
ture, a strongly admissible tensor product topology or briefly strongly admissible if it satisfies:

98



I1.1. Topological Vector Spaces 1.7. Topological tensor products

(sATPT) The canonical map V. x W — V ®; W is continuous where V x W carries the product
topology.

1.7.2 The admissible respectively strongly admissible vector topologies on V&® W are obviously
partially ordered by set-theoretic inclusion. Therefore, the following definition makes sense.

1.7.3 Definition

99



I1.2. Banach Spaces and Algebras

2.1. Functional calculus
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11.3. Hilbert Spaces

3.1. Inner product spaces
3.1.1 Let us first remind the reader that as before K stands for the field of real or of complex
numbers. We will keep this notational agreement throughout the whole chapter.

3.1.2 Definition By a sesquilinear form on a K-vector space V one understands a map (-, -) :
V x V — K with the following two properties:

(SF1) The map {,-) is conjugate-linear in its first coordinate which means that
(1 + v, wy = (v1,w) + (w2, wy and {rv,w) =Tv,w)
for all v,v1,v9,w e V and r € K.
(SF2) The map (-, -) is linear in its second coordinate which means that
(uywy + wa) = (v,wr) 4+ (v,we)y and (v,rw) = r{v,w)

for all v, w, w1, ws € V and r € K.
A hermitian form is a sesquilinear form (-,-) on V with the following additional property:

(SF3) The map {-,-) is conjugate-symmetric which means that

(v,wy ={w,v)y forallv,weV .

A sesquilinear form (-, -) is called weakly-nondegenerate if it satisfies axiom
(SF4w) For every v € V, the map V — K, w — (w, v) is the zero map if and only if v = 0.
Finally, one calls a hermitian form {-,-) on V positive semidefinite if

(SF5s) (v,v) =0 for all ve V.

3.1.3 Remark Recall that a map {-,-) : V x V — K is called bilinear if it satisfies and
the following condition:

(BF1) The map {,-) is linear in its first coordinate which means that
vy + vo,w) = (v, wy + (vo,wy and {rv,w) = r{v,w)

for all v,v1,v9,w e V and r € K.
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In case the underlying ground field K coincides with the field of real numbers, a sesquilinear
form is by definition the same as a bilinear form, and a hermitian form the same as a symmetric
bilinear form.

3.1.4 Given a positive semidefinite hermitian form {-,-) on a K-vector space V, one calls two
vectors v, w € V orthogonal if (v, w) = 0. Since the hermitian form (-, -) is assumed to be positive

semidefinite, the map
|- 1:V = Rao, v o = /{0, 0)

is well-defined. We will later see that | - | is a seminorm on V and therefore call the map || - ||
the seminorm associated to {-,-). The following formulas are immediate consequences of the
properties defining a positive semidefinite hermitian form and the definition of the associated
seminorm:

v+ w|* = |v]* + 2Re (v, w) + |w|* for all v,we V, (3.1.1)
v+ w|* = |v]* + |w|? for all orthogonal v,w e V , (3.1.2)
v+ w|?+ v —w|® = 2(Jv]* + |w]?) forallv,weV, (3.1.3)
[rv] = A/|r|*(v,v) = |r||v]| for all v,w eV and r e K . (3.1.4)

Formula (3.1.2)) is an abstract version of the pythagorean theorem, Equation (3.1.3) is called the
parallelogram identity. The triangle inequality for the map | - | will turn out to be a consequence
of the next result.

3.1.5 Proposition (Cauchy—Schwarz inequality) Given a positive semidefinite hermitian
form {(-,-) on a K-vector space V the following inequality holds true:

[Cv, wH] < lv||w|  for all vyw e V. (3.1.5)

FEquality holds if v and w are linearly dependant. In case {-,-) is positive definite, the converse
holds true as well.

Proof. First consider the case where |v|| = |w| = 0. Note that this does not imply that v = 0 (or
w = 0) unless the hermitian form (-, ) is positive definite. Now put ¢ = —(v, w) and compute

0 < [lev + w||? = 2%Re(cv,w)) = —2|<v, wH|? . (3.1.6)

This entails (v, w) = 0 and the Cauchy—Schwarz inequality is proved for |v| = |w| = 0.

If |v| # 0 or Jw| # 0, we can assume without loss of generality that |v| # 0. Under this
assumption put
(v, w)

ol?

and compute

0< |ev+w|? = \c]2|\v||2 + 29%2(E<v,w>) + |w|? =

v, wH? v, wdH|? v. w2 3.1.7
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Hence the estimate
v, w)? < v lw]?

holds which entails the Cauchy—Schwarz inequality.

In the case where v, w are linearly dependant nonzero elements of V there exists a nonzero scalar
a € K such that v = aw. Therefore

Ko, wp] = |a] [w]? = [o]|w] .
If one of v or w is 0, then both sides of the Cauchy—Schwarz inequality are 0.

In the positive definite case, equality in (3.1.5) entails by Equation (3.1.7) that cv + w = 0
whenever v # 0. If v = 0, then v = 0 - w. In either case this means that v and w are linearly
dependant. O

3.1.6 Lemma A positive semidefinite hermitian form {-,-) on a K-vector space V is weakly-
nondegenerate if and only if it is positive definite that is if and only if

(SF5p) (v,v) > 0 for all v e V\{0}.

Proof. A positive definite real bilinear or complex hermitian form (-, -) is weakly-nondegenerate
since for every v € V\{0} the linear form (v, —) : V — K is nonzero by {v,v) > 0.

Conversely, if (v,—) : V — K is nonzero for all v € V\{0}, then there exists an element w € V
such that {w,v) # 0. The Cauchy—Schwarz inequality entails

0 < [w, v)* < (w, w)<v,v) ,
which implies (v, v) > 0. Hence (-, -) is positive definite. O
3.1.7 Proposition The map

-1V = Reo, v v = v/(w,0)

associated to a positive semidefinite hermitian form {-,-) on a K-vector space V is a seminorm.
If the hermitian form is positive definite, then || - | is even a norm.

Proof. Absolute homogeneity |(N1) is given by Eq. (3.1.4). The triangle inequality is a conse-
quence of the Cauchy—Schwarz inequality:

2
[v+wl? = [v]* + 2%Re (v, w) + [w]® < ol + 2 [o] [w] + [w]* = (o] + [w])” .
Finally, if (-, -) is positive definite, then ||v| = 1/{v,v) > 0 for all v € V\{0}, so | - | is a norm.]

3.1.8 Definition By an inner product or a scalar product on a K-vector space H one under-
stands a positive definite hermitian form on H. A K-vector space H endowed with an inner
product {-,-) : H x H — K is called an inner product space or a pre-Hilbert space.

A hermitian form on a K-vector space H which is only positive semidefinite is called a semi-inner
product or a semi-scalar product.

A Hilbert space is an inner product space (H,{-,-)) which is complete as a normed vector space.
In other words, a Hilbert space is Banach space where the norm on the space is induced by an
inner product.
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3.1.9 Examples (a) The vector space R" with the euclidean inner product
n
Coy R X R S R, (01,0 ,00), (w1, wy)) = Y v,

is a real Hilbert space. Obviously, {-,-) is linear in the first argument, symmetric, and positive
definite, hence a real inner product. The associated norm is the euclidean norm. We have seen
before that R™ with the euclidean norm is complete.

(b) The vector space C" together with the hermitian form
(,5:C"x C" - C, ((vl, cey Up)y (W, . ,wn)) — Z@wz
i=1

is a complex Hilbert space. One immediately verifies that (-, -) is linear in the second argument,
conjugate-symmetric, and positive definite. Hence {-,-) is a complex inner product which we
sometimes call the standard hermitian inner product on C". Its associated norm is again the
euclidean norm, so by completeness of C* =~ R?" with respect to the euclidean norm one obtains
the claim.

(c) The set

= {(Zk: Jken € CY

Z EARES 00}

of square summable sequences of complex numbers is a complex Hilbert space with inner product
Gy x> C, ((Zk)keN, wy,) keN Z ZpWg -

To prove this one needs to first verify that ¢2 is a subvector space of CN. For z = (2K ) keN € cN

denote by ||z| the extended norm /3% o |2k]? = sup A/ Sh—y |2x|2 € [0,0]. Then z € £2 if and
KeN

only if |z|| < 0. Now let @ € C and z € ¢? and compute

0
2, lazef? = a|
k=0

Hence az € 2. If z,w € ¢%, denote for each K € N by z(x) and wg) the “cut-off” vectors

laz] =

0
2 a2 =lal -z < 0.

k=0

(20,...,2K) € CE*L and (wo, ..., wk) € CE+1 respectively. By the triangle inequality for the
norm on the Hilbert space CX+1 one concludes

K
Z |21+ wil? = |lzx) + wie) | < 2y + ol < 2] + llw] < oo .
k=0

Therefore, the sequence of partial sums ZkK:o |zx + wi|?, K € N, is bounded, so convergent by

the the monotone convergence theorem. One obtains

lz+w| = lim | > [z + wel2 < 2] + [w] < o0 .
K—w —
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Hence z + w is square summable and ¢2 a vector subspace of CY indeed. Note that our argument
also shows that the restriction of the extended norm to ¢2 is a norm.

We need to show that (-, -) is well-defined. To this end it suffices to prove that for all z,w € £2
the family (z;Wy),cy is absolutely summable or in other words that >, |zxwk| < 0. One
concludes by the Holder inequality for sums

K K
2 1zwwnl = ) laewn] < el lwe | < 2] el -
k=0 k=0

So the left hand side has an upper bound uniform in K which by the monotone convergence
theorem entails convergence of the partial sums and the estimate

o0
. [Zewe] < 2wl < oo .
k=0

By definition it is clear that {-,-) is linear in the second argument, conjugate-symmetric and
positive definite, hence a complex inner product. Note that the norm associated to (-, -) coincides
with the above defined map | - |.

It remains to be shown that (2 is complete. Let (2™)pen with 2" = (2]1),y € ¢* for all n € N be
a Cauchy sequence in 2. For € > 0 choose N, € N so that

n

[z" = 2" <e foralln,m > N, .

For each fixed k € N one therefore has
lzip — 21| < 2" — 2™ <e forall n,m > N; . (3.1.8)

By completeness of C there exist z;, € C such that lim,, ., 2z} = 2 for all £ € N. We claim that
z = (21)ken is an element of £2 and that (2"),ey converges to z. To verify this observe that for
alle >0, Ke Nand n > N,

K
|2 — 22 < sup Z |2 — 27 < sup 2™ — 2P <€

0 m=Ng k=0 mz=Ne

M=

K

Z 2z, — 20> = lim
m—00

k=0 k

This implies by the triangle inequality and the fact that the Cauchy sequence (z™),en is bounded
in norm by some C > 0 that for all K e N and N = N;

K
S 1kl = ol < Doy — 2oyl + lzfiol < ey — 2ol + 1N < 1+C.
k=0

Hence |z = 4/> 1o |2k < 1+ C and z € ¢2. In addition one obtains

|z = 2" = lim
K—w

K
Z |z — 27> < e foralln> N, .
k=0

This means that z is the limit of the sequence (2")nen and £2 is complete.
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(d) Denote by A the Lebesgue measure and let

f is Lebesgue measurable and || f|2 := 4 /J |f]2d\ < oo}
R4

be the space of Lebesgue square integrable functions on R%. Then LQ(Rd) is a linear subspace
of the space of all measurable functions by Minkowski’s inequality which reads

£2(Rd):{f:Rd—>(C

If +glp <[ flp + lgl, for all measurable f,g:R* — C .

Hereby, |f|, denotes for p € [1,00) the LP-seminorm ({g, |f[Pd\) Y7 of a measurable function
f:R?— C. Note that | f], can attain the value oo, namely when f is not in the space LP(R%).
By Hélder’s inequality, the product fg is Lebesgue integrable for f, g e £2(R%) and one has the
estimate

J Fgld> = [Fgli < 1]z Ll -
Rd

Hence the map
G s EHRY % L3R = €, (fug) = | Fodd

is well-defined and a positive semidefinite hermitian form on £2(R%). By construction, the
associated seminorm is the £2-seminorm || - |o. Modding out £2(R?) by the kernel

fRd Fl2dA = 0}

L2(RY) := L2(RY)/N .

N = Ker(] - |2) = {f e £2(RY)

gives the Lebesgue space

The hermitian form {-,-) vanishes on N x L£2(R?) and £2(R%) x N by the Cauchy-Schwarz
inequality, hence descends to a hermitian form

Gy DRY x PRY = C, (F+Ng +3) = | Fgdn.
R4
That hermitian form is positive definite, since (f + N, f + N) = 0 means {p, | fI2d\ = 0, hence
f € N. Let us show that L?(R%) is complete with respect to the L?-norm | - |2 induced by the

inner product. Note that on the quotient space | - |2 is a norm indeed by construction. So let
(fn + N)pen be a Cauchy sequence in L?(R?%). Choose a subsequence ( fry )ken such that

1
| = Frn_yll2 < o for all k € N=g

and put
gn(x) = Z | fr () = fr, (@) forze R and neN .
k=1

The limit function
g:RY - [0,0], £ — lim g,(z) = liminf g, (z)

n—o0 n—0o0
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then exists even though it might not be finite everyhwere. Minkowski’s inequality for the £2-
norm entails that |g,[2 < 1 for all n € N, hence g is measurable and |g||2 < liminf,, o |gnll2 <1
by Fatou’s lemma. Therefore, g(z) is finite for all z up to a set Z = R? of measure 0, and for
those = the series with partial sums g, (x) converges absolutely. For all x € R¥\Z the limit

k

f@) = lim fo (2) = foo + Yim > (fo;(2) = Fn, 1 (2))

j=1

therefore exists in C. Put f(z) = 0 for all x € Z, and let xz : R — R be the characteristic
function of Z. Then the sequence of functions (xz fn, )ken converges pointwise to f, and each of
the functions yz f,, is measurable, actually even square integrable. Since

X2 fri| < [X2Zfnol + 9k < [X2fnol +9 forallkeN

and since |xzfn,| + ¢ is square integrable by Minkowski’s inequality, the pointwise limit f is
square integrable by Lebesgue’s dominated convergence theorem, and f 4+ N is in L2(R%). Tt
remains to show that (f, + N),en converges to f + N in the norm | - [2. To this end let € > 0
and choose N € N such that | f, — fim]2 < € for n,m > N. By Fatou’s lemma one obtains

J | fn — f?dX < liminff |fo — fml?d\ < e* foralln> N .
R4 m—0  Jrd

Hence lim,, o || fn— f|2 = 0, and L?(R?) endowed with the inner product (-, -) is a Hilbert space.
It is called the Hilbert space of square-integrable functions on R%. Note that for every complete
measure space (£, 1) one obtains in the same way the Hilbert space L?(€2, it) of square-integrable
functions on (€, ).

3.1.10 Theorem Let 'V be a normed K-vector space. Then the norm ||-|| : V. — Rxq is associated
to an inner product (-, : V x V. — K if and only if the parallelogram identity

[v+w]® + v = w]* = 2]jv]* + 2]w]

holds true for all v,w € V. In this case, the inner product of two elements v,w € V can be
expressed by the polarization identity for K = R

1

1
(w,w) = 7 (o + wl? = v —w|?) = 5 (lo+ w|? = o] = fwl?) (3.1.9)
respectively by the polarization identity for K = C
14
(vy,wy = 4,;1ikw+ iFv)? . (3.1.10)

Proof. The forward direction is a consequence of Eq. To show the backward direction
we consider two cases K = R and K = C separately.

1. Case. Given the norm | - | define (-,-): V x V — R by real polarization

(Jv+w|* = lv —w[?), where v,weV.

(v, wy =

| =
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Note that the parallelogram identity entails

(o +w]® = Jol* = w]?)

N | =

1
7 o+ wl = o —wl?) -

Observe that by definition (v, w) = (w,v) and |v]| = 4/{v,v). Let us show additivity in the first
variable. Let v1,v9, w € V and compute using the parallelogram identity
o1 + va + w[? = 2v1 + w|? + 22| — lvr + w — v2|? ,

[v1 + v2 + w||2 = 2|vy + w||2 + 2“’01“2 — v + w — v1||2 .
Hence
Jor +v2 + w|? = lor £ w|* + vz £ w|? + Jor]* + o2 = [lor £ w — va|* — oo £ w — 01 |? .

Subtracting the — version from the + version of this equation entails

1
(Hm + vy + wH2 — |lvg +vo — wHQ) =

(v + vo,w)y = 1

1
= 5 (lor + wl* + oz + w]* = o1 = w]* = Jop = w[?) = w1, w) + (o, w)

so additivity in the first variable is proved. By induction one derives from this that for all natural
n

(nv,wy = n{v,w)y forallv,weV . (3.1.11)
Since then (—nv,w) — n{v,w) = (—nv + nv,w) = 0 for all n € N, Eq. (3.1.11)) also holds for
n € Z. Now let p € Z and ¢ € N-g. Then q<§v,w> = (pv,w) = p{v,w), hence one has for
rational r

{rv,wy = r{v,w) for all v,weV . (3.1.12)

Since addition, multiplication by scalars and the norm are continuous, the function

1
R >R, r— {rv,w) —r{v,w) = 1 (Jrv + w|? + v —w|?* = |rv — w|?® = rv + wH2)
is continuous. Since it vanishes over Q, it has to coincide with the zero map. Therefore,
Eq. (3.1.12) holds for all » € R. So {-,-) is linear in the first coordinate. By symmetry, it

is so too in the second coordinate. Hence (-, -) is a symmetric bilinear form inducing || - |.

2. Case. In the case K = C use complex polarization and put

4
1
(v, wy = 1 Z i"|lw + i* > forall v,weV .
k=1

Then (-,-) is conjugate-symmetric, since

W~

4
Ty = 3 3w+ ol = 3 DD = w4 ol = G0

k=1 k=1

Next compute

Re (v, wy = 7 (Jw +vf* ~ Jw - v]*)

| =
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and 1
Jm v, w) = 1 (Hw + ivH2 —Jw - iv“z) .

By the first case one concludes that fRe(-, ) and Jm(:,-) are both R-linear in the first and the
second coordinate. Moreover,

Re (v, iw) = (Jw— iv]? = |w + ivH2) = —Jm{v,w) = Re i{v,w)

=

(liw +of* = iw = vf?) =

EN

and
1
Jm (v, iw) = 1 (Jiw + iv])?* = [iw — iv]?) = Re (v, w) = Tm i{v,w) ,

hence ¢+, -) is complex linear in the second coordinate. Finally,

Re (v,v) = HvH2 and Jm{v,v) = (Hv + ivH2 — v — isz) =0.

=

This finishes the proof that (-, -) is a complex inner product inducing the norm | - |. O

3.1.11 Next we will turn Hilbert spaces into a category. To this end one needs to know what
morphisms in this category should be. There are two options each giving rise to a category of
Hilbert spaces. These categories just differ by their morphism classes. The first one is to have
as morphisms linear maps A : H; — Ho preserving the inner products which means that they

fulfill
(Avy, Avgy = (v1,v9) for all v1,ve € H; .

By Theorem [3.1.10| this property is equivalent to
[Av|| = |v]| for all ve H; ,

that is to A being norm preserving or isometric. Obviously, the identity map on a Hilbert space
is isometric and the composition of two composable isometric linear maps is again isometric and
linear. Hence Hilbert spaces together with norm preserving linear maps between them form
a category which we denote by Hilb,,. The isomorphisms in this category are the surjective
isometric linear maps between Hilbert spaces. Such maps are called unitary. The condition of a
linear map being norm preserving is pretty restrictive, so the category Hilb,, contains only few
morphisms. This can be cured by allowing all bounded linear maps between Hilbert spaces to be
morphisms that is of all linear A : H; — Hs for which there exists a C > 0 such that

|Av| < C|v| for all ve H; . (3.1.13)

The existence of a smallest such C' is guaranteed by the following. It is called the operator norm

of A and is denoted |A]|.

3.1.12 Lemma The operator norm of a bounded linear operator A : Hy — Ha between Hilbert
spaces H1 and Hy exists and is given by

[ Al = sup {|Av| | v e I, [v] = 1}
sup {[|Av| | v e Hy, |v]| < 1}
= sup{|<w,Av>| ’ veHy, we Hy, |v| =|w| = 1} .
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Proof. If A: 3; — Hy is bounded, then the set {||Av| | v € Hi, |v| = 1} is bounded, hence has
a supremum Cy. This implies that for all non-zero v € H;

ot = 1ol |4 (75 )| < ol

Hence the estimate (3.1.13)) holds true for C' = Cy. Moreover, Cj is the smallest such C because
if 0 < C1 < Cp, then there exists v € H; with ||v| = 1 and ||Av| > Cj. This proves that the
operator norm of A exists and that it fulfills | Al = Cp.

By definition of Cjp, the estimate |A| = Cy < sup {|Av| | v € Hy, |v| < 1} holds true. By
definition of the operator norm, |Av| < ||A] for all v € H; with |v| < 1. The two estimates
together entail the equality |A| = sup {| Av| | v e Hy, |lv] < 1}.

The Cauchy—Schwarz inequality entails
sup{|<w,Av>\ ’ veHy, we Hoy, v = |w| = 1} < |A] .

The converse estimate follows by the observation that

A
sup {[(w, Av)| | w € 3, ful = 1} > |(7, Av)| = 4]

whenever Av # 0. This proves the last claimed equality. O

Every norm preserving linear map is bounded with operator norm 1. In particular, the identity
map on a Hilbert space is bounded. Moreover, if A : Hy — Hy and B : Hy — Hj are bounded
linear operators between Hilbert spaces, then the composition BA : H; — Hs is bounded with
operator norm < || B| ||A] since for all v € H; with ||| < 1

|BAv| < [[B]l|Av] < [B] | A] -

Hence Hilbert spaces as objects together with bounded linear maps as morphisms form a category
which we denote by Hilb and call the category of Hilbert spaces. Note that the morphisms in this
category appear to “forget” the inner product and just preserve the linear and the topological
structure. John Baez (Baezl |1997, p. 133) has explained how to heal this apparent defect by
showing that Hilb carries a so-called #-structure given by the adjoint map on bounded linear
operators. We will come back to this point later when we introduce adjoint operators.

As proved already for Banach spaces, a linear map between Hilbert spaces is bounded if and
only if it is continuous. For reasons of completeness and convenience we state here the result for
inner product spaces.

3.1.13 Proposition Let A : Hy — Hy be a linear map between two inner product spaces. Then
the following are equivalent.

(i) A is bounded.
(ii) A is continuous.

(iii) A is continuous at 0.
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Proof. = . Assume that A is bounded. Let |A| := sup,eq, [|Av| be its norm. Then,
for all v, w € H;
[Av — Aw] < |A] - o — w] .

Hence A is Lipschitz continuous, so in particular continuous.

- EL If the map A is continuous, it is in particular continuous at the origin.

m = . If A is continuous at the origin, there exists § > 0 such that for all v € H; the
estimate |Av| < 1 holds whenever [[v| < . This implies that for v with [jv| <1

| Av| = 26 ‘A <1v> H <25
2%

This means that A is bounded. O

3.1.14 Last in this section we will introduce bounded bilinear and sesquilinear maps. We define
them for normed vector spaces. Their main application lies in the operator theory on Hilbert
spaces, so we introduce them here.

3.1.15 Definition Let V; and V5 be two normed vector spaces over K and denote the norms
on V; and Vg by the same symbol | -||. Assume that b: V; x Vo — Kis a bilinear or sesquilinear
form that is b is linear in each argument respectively b is conjugate linear in the first and linear
in the second argument. The form b : Vi x Vo — K then is called bounded if there exists a C > 0
such that

|b(v,w)| < C|v|||w] for all ve Vi, we Vy.

In this case,
0] := sup {[b(v,w)| | v € V1, we Va, v = |w] =1}

exists and is called the norm of the form b.

3.1.16 Example The inner product on a (pre-) Hilbert space is bounded by the Cauchy—
Schwarz inequality and has norm 1.

3.1.17 Proposition A bilinear or sesquilinear form b : Vi x Vo — K defined on the cartesian
product of two normed vector space V1 and Vo over K is bounded if and only if it is continuous.

Proof. If b is bounded, then
b(v, w) — b(v', w")| < |b(v, b(v', w)| + b, w) — bV, w')| <
< [o] (|IW\| Jo = + V'] |w — w])

for all v,v" € Vi and w,w’ € V5. Hence b is locally Lipschitz continuous, so in particular
continuous.

Conversely, assume now that b is continuous. Then one can find § > 0 such that for all v € V;
and w € Vy of norm less than ¢ the relation |b(v,w)| < 1 holds true. But that entails for all

non-zero v, w
4 v Jlw] vosw 4
|b(v, w)| = b (05,0 < s lvlfwl -
62 200" 2fw] ) 62

Hence b is bounded. O
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3.1.18 Remark Given two normed vector spaces or more generally two topological vector spaces
V1 and Vs one can consider bilinear or sesquilinear forms b : Vi x Vo — K which are only
separately-continuous. That means that for all v € V; the map b, = b(v,—) : Vo — K and for
all w € Vy the map b, = b(—,w) : Vi — K is continuous. In general, separate-continuity is
strictly weaker than continuity unless the underlying vector spaces are Banach spaces where the
two notions coincide as a consequence of the Banach—Steinhaus theorem. Let us prove this. By
continuity of b, there exist C, > 0 such that |b,(w)| < C, |w| for all w € V3 and C,, = 0 such
that |by (v)| < Oy |Jv]| for all v e V. Hence, for all w € Va

sup  |by(w)| =  sup |by(v)] < Cyp < 0.
veV, |v||<1 veV, |v|<1

The Banach—Steinhaus theorem now entails

sup |b(v,w)| = sup |by| < o0 .
vweV, v, Jw|<1 veV, Jv]<1

Therefore, b is bounded, so continuous by the preceding proposition.

3.2. Orthogonal decomposition and the Riesz representation
theorem

3.2.1 One of the issues with infinite-dimensional analysis is that a closed subspace of an infinite
dimensional Banach space might not have a closed complement. Fortunately, the situation in
Hilbert space theory is not so grim because every closed subspace of a Hilbert space admits
an orthogonal complement. This is one of the four crucial properties which distinguish Hilbert
spaces from Banach spaces and which are stated in the following.

In this section H will always denote a Hilbert space over the field K = R or K = C. The symbol
-,y will stand for the inner product of K.

3.2.2 Theorem (Best approximation theorem) Fuvery closed convexr nonempty subset C' of
a Hilbert space H has a unique element of minimal norm.

Proof. Let d = inf{|v| | v € C'} which is a non-negative real number. We claim there exists a
unique vy € C with [jvg| = d. For uniqueness, consider two vectors vy, v1 satisfying the desired
property, and let v = %(vo + v1) be their midpoint. Then

(lvoll + Jlua]}) = d

| =

1
[ol = 5lvo +v1] <

By minimality of d this entails |v| = d. By the parallelogram identity

1 1

2 2 2
00+ 0] + g0 -w)| =22 +2| 2 -,
hence
1 ? 2 2
Hn-w) <d= ol =0,
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proving vg = v1.

For the proof of existence observe that by definition of d there exists a sequence (v, )peny < C
such that lim, o |v,| = d. By convexity
1

5(1)” +vy) € C

for all n,m € N, hence vy, + vp||> > d2. The parallelogram equality entails
0< [lon — UmH2 = 2“7)71“2 + 2vaH2 — [vn + Um”2 < 2””71“2 + 2vaH2 —4d* .

Since limy, o [[vp|| = d there exists for given € > 0 an N € N such that [v,[|> — d? < 2&? for all
n = N. Hence, for n,m > N
0<fvn—vm| <e,

and (vp)nen is a Cauchy-sequence, so convergent by completeness of H. Put vy := lim, o vy.
Then vy € C since C' is closed and |vg|| = limy—o [vn | = d. The existence claim follows and the
proof is finished. 0

3.2.3 Theorem and Definition (Orthogonal decomposition theorem) Let V. < H be a
closed subspace of the Hilbert space H. Then the orthogonal complement

Vlz{wef)—f‘<v,w>=0f0reachve\f}

is a closed subspace of H and H = V@ V+. The map pry : H — V which maps w € H to the
unique wy € V such that w — wy € V* is called the orthogonal projection onto V. It satisfies
|w —pry(w)| = d(w, V) := inf {Jv — w| | v € V} that is pry(w) is the unique element of V
having shortest distance from w.

Proof. For v € H define v* : H — R by v”(w) = (w,v). Recall that this map is continuous and
linear. Hence the kernel (v*)~1(0) is a closed linear subspace of H and

V=@ 7(0) (3.2.1)

veV

is a closed linear subspace. To show VA V< = {0}, consider v € VA VL. Then |[v]? = (v,v) = 0.
Next we want to show that every w € H can be written in the form w = wy +ws with wy € V and
wy € VE. To see this put C' = w — V. Then C is closed and convex. By the best approximation
theorem there exists a unique element wy € C' of minimal norm. Let w; be the unique element
of V such that wy = w — w;. It remains to show wy € V+. Since wy has minimal norm among
the elements of w — V, the following inequality holds for all vectors v € V:

Jwa? < wa +0]* = wa]* + 2 ReCwa, v) + [v]* .

Hence
0 < 2Re(ws, v) + [v]* forallve V.

Now assume that |v| = 1 and choose ¢ € R such that e“{ws,v) € R. Setting v = €?v, one
obtains for all A € R by the last inequality

0 < 2w, W'Y + | M'|2 = 2X(wa, vy + N2 .
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For A = —(ws,v’) this entails the estimate
[wa, v")[? = — (=2|¢wa, V)2 + [(we, v')[?) = — (2Awa, v') + A?) <0 .
Hence {(ws,v) = 0 for all unit vectors v € V, therefore wo € V*.

The remainder of the claim is now an immediate consequence of the construction of w; from the
given w and the observation that pry(w) = w. O

3.2.4 Corollary For every subspace V. < H of a Hilbert space H the orthogonal complement

VL is closed, and the relation

vi=v"

holds true. Moreover, o
V = (VL)L
Proof By Equation (3 , the orthogonal complement Vl is closed. Since V' < V the inclusion

V — V1 holds true. The converse inclusion V4 < V follows from the observation that if
w e V+ and (vn)nen is a sequence in V' converging to some v € V, then

(w,vy = lim {w,v,) =0 .
n—a0
This proves the equality V+ = V. The inclusion V < (Vl)L = (VH)t is immediate by
definition of the orthogonal complement. Since
H=VaeVt=vHtev:
by the preceding theorem, the equality V = (V+)* follows. O

3.2.5 Theorem (Riesz representation theorem for Hilbert spaces) Let H be a Hilbert
space and H' its topological dual. Then the musical map

HSH, v = (Hswe— (v,w)eK)
s an wsometric isomorphism which is linear in the real case and conjugate-linear in the complex

case.

Proof. Obviously,  is linear if the ground field K equals R and conjugate-linear if K = C. Now
observe that for all v € H by the Cauchy—Schwarz inequality
b
[0°]] = sup {[<v,w)| | we H & |w| =1} = o] ,

hence ” is an isometry, so in particular injective. It remains to show surjectivity. So assume that
o : H — K is a nontrivial continuous linear form. Let V be its kernel. Then V is a closed linear
subspace of J. Since « is nontrivial, the orthogonal complement V= is nontrivial, too. Hence
VL =~ 3/V is isomorphic to im o = K and there exists a vector v € V*\{0} such that a(v) = 1.
Since v spans V+ there exists for every w € H a unique A, € K such that w = pry (w) + Ayo.
Then compute

v ’ 1
a(w) = a(Ayv) = Ay, and <\v||2> (w) = W<v,w> o ”2<v LU = Ay

b
This entails o = (W) . and ” is surjective. O

114



I1.3. Hilbert Spaces 3.2. Orthogonal decomposition and the Riesz representation theorem

3.2.6 Remark Sometimes in the Hilbert space literature the inverse of the musical isomorphism
" H — H' is denoted ? : H' — H. We will follow that convention.

3.2.7 Corollary Fvery Hilbert space H is reflexive that is the canonical map
H— H" v (H 35X~ Av) €K)
is an isometric isomorphism.
Proof. By the Riesz Representation Theorem, the dual H’ is a Hilbert space with inner product
o) s H X H =K, (A ) = 0 ) = (b, 2P

Hence, by applying the Riesz Representation Theorem twice, the map b0 H - H” is an
isometric linear isomorphism. Now compute for v € H and A € H’

(") (N) = 7, A) = WL vy = A(v) .
Hence ” o coincides with the canonical map above and the claim follows. ]

3.2.8 Corollary Let H; and Hy be two Hilbert spaces and b : Hi x Hog — K a bounded sesquilin-
ear form. Then there exists unique bounded linear map A : Ho — Hy such that

b(v,w) = v, Aw) for all ve Hy, we Hs . (3.2.2)
Moreover, the operator norm |A| coincides with |b].
Proof. First let us show uniqueness. So let A, B : Ho — H; be bounded and linear so that
b(v,w) = (v, Aw)y = (v, Bw) for all ve Hi, we H, .

Then |(A — B)w|?* = {(A — B)w, Aw — Bw) = b((A — B)w,w) — b((A — B)w,w) = 0 for all
w € Ho which entails equality of A and B.

To prove existence observe that for every w € Hy the map

by 1 Hi — K, v — b(w,v) := b(v,w)

is bounded and linear, so by the Riesz representation theorem there exists for every w a unique
element Aw € 3 such that (Aw,v) = b(w,v) for all v € H;. By construction, Aw = (by)~.
Since the maps Ho — H), w — b, and i H} — H; are both conjugate-linear, A is linear.
Hence A is the desired linear operator fulfilling Equation .

For the operator norm compute

| Al = sup { [<v, Awp| | v e Hy, we I, o] = |w]| =1} =
= sup { [b(v,w)| | ve Hy, we Hy, |v] = [w| =1} =[] .

Hence A is bounded with operator norm equal to |b]| and the claim is proved. O
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3.2.9 Last in this section we will examine the Hilbert direct sum or just Hilbert sum of a family
(H;)ier of Hilbert spaces. It is defined by

iel

(Jvil?),.; is summable} -

o - { o

el

_ {( s ;| 3C = 0VJ € Pan(I ZH%HQ }
iel

ieJ

where, as usual, Pg,(I) denotes the set of all finite subsets of I.
3.2.10 Proposition Let (H;);er be a family of Hilbert spaces. Then the Hilbert direct sum @f}{i

1€l
1s a Hilbert space with inner product given by

(== @ x DI =K, ()iers (wier) = Y v wy)

el el i€l
Proof. We show first that é—\)ﬂ{i is a subvector space of the direct product [ [, ;3. Let z € K
i€l
and (v;)ier, (w;)ier € PH;. Choose C, D = 0 such that
1€l
Ml <C and > |wil> <D forall J e Pen(I) .
e e
Then
llzvil? = 12| D oil* < |2 C for all J € Pga(I) (3.2.3)
ieJ ieJ

0 (2v;)ier € PH;. Moreover, by Minkowski’s inequality for finite sums,
el

2
2
Do +will> <, DIl + , D fwil? <(\FC+\/5) for all J € Pgo(I) . (3.2.4)

ieJ e i€

Hence the family ([Jv; + w;i|?),_; is summable and (v; + w;);c; € @9{
1€l

Next observe that the map

| = @H: = K, (vi)ier = [(wi)iet]| =, D Jvil]?
iel el

is well-defined by definition of the Hilbert direct sum. It is even a norm by (3.2.3)) and (3.2.4).

Now we need to show that the inner product on @J‘Cz is well-defined which means that the family
iel
(Cvs, wi)),ep is summable for all (v;)ier, (wi)ier € @IH;. To this end let J < I be a finite subset.

el
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Then, by the triangle inequality, the Cauchy—Schwarz inequality on the Hilbert spaces H; and
the Cauchy—Schwarz inequality for finite sums,

> Cviswiy

€

< 2 Kviwipl < Y ol Jwill < D] il - Z Jwill® < |(vi)ier| || (wi)ier] -

e e € e

Hence the family ({v;, w;)),c; is absolutely summable, so in particular summable, and the inner
product is well-defined.

By definition and since all the inner products on the Hilbert spaces H; are conjugate symmetric
and positive definite, the map (—, —) on PH; has to be conjugate symmetric and positive
el

definite as well. It remains to show linearity in the second argument. Denote for (v;)ier, (w;)ier €
[ Lie; 3 and J € Pan (1) by {(vi)ier, (wi)ier)s the finite sum >}, ;(v;, w;). Observe that the net

{(vi)ier, (Wi)ier)g converges to {(v;)ier, (w;)ier) in case both (v;)er and (w;)ier are in

JE?ﬁn(I)
@H;. Now let z € K and (v;)ier, (wi)ier, (W))ier € @H;. Then
iel el
{(vi)ier, (Wi)ier + (w;)ier)s = {(vi)ier, (wi)ier)s + {(vi)ier, (w;)ier)s and

{(vi)ier 2(wi)ier)s = 2{(vi)ier, (Ws)ier)J -

By convergence of all the nets (<(v,)le 1, (Wi)ier) ]) , linearity in the second argument fol-

Jeg)ﬁn(l)
lows.
By construction, the norm associated to the inner product (—, —) on PH; coincides with the
el
above defined norm H — H It remains to show that @JH; equipped with the norm || — H is complete.

el

To this end observe that for every finite J < I the map

[ =1, TT%6 = Rso, iier = VK@iier, (0i)ierys = , [ il
iel e

is a seminorm and that (v;)ier € [ [;c; H; lies in the Hilbert direct sum é—jf]{i if and only if the
el
)iel)peny D€ & Cauchy sequence. Let € > 0

n
7

family (H(UZ)E[HJ) JePan(l) is bounded. Now let ((v
and choose N;: € N such that

| (0ier — (0] )ier| <€ for all m,m > N . (3.2.5)
Then
|(v™Yier — (v?)iE[HJ <e forall JePgs,(I) and n,m = N; . (3.2.6)

Taking J = {j} for j € I this implies that the sequence (U;'L)neN is a Cauchy sequence in the
Hilbert space H;. Let v; € 3{; be its limit. The family (v;)icr then is an element of é—\)ﬂ-fi. To
i€l
verify this put NV = N} and observe that by (3.2.6|) for all finite J < I
N N

H (Ui)iGIHJ < | (v; )iEIHJ + [ (i)ier — (v; )iEIHJ =

= [@ier]; + Yim [@ier = @it < [ )ied| + 1.
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Hence the family (|| (Vi) ie 1|| J) JePan(D) is bounded and (v;);es lies in the Hilbert direct sum of the
spaces H;, i € I. Moreover, (3.2.6]) entails that

|| (vi)ier — (Uzn)ieIHJ = %i_l)noo H(U%ﬂ)ie[ — (U?)ieIHJ <e forall Je Pgy(l) and n > N; .

Since || (vi)ier — (v’-"‘)ie[H is the limit of the net (|| (vi)ier — (VI the estimate

i i )iEIHJ)Je?ﬁn(I)’

|| (i)ier — (U?)ieIH <e foralln = N,

follows, and the sequence ((v]")ier),,cy convergences to (v;);er. This finishes the proof. O

3.3. Orthonormal bases in Hilbert spaces

3.3.1 Definition A (possibly empty) subset S of a Hilbert space H is called an orthogonal
system or just orthogonal if for any two different elements v, w € S the relation (v, w) = 0 holds
true. If in addition |v| = 1 for all elements v € S, then the set is called orthonormal or an
orthonormal system. A family (v;)ier of vectors in 3 is called orthogonal if (v;,v;) = 0 for all
i,7 € I with ¢ # j and orthonormal if in addition |v;| =1 for all i € I.

3.3.2 Obviously, the set of orthonormal subsets of a Hilbert space is ordered by set-theoretic
inclusion. Therefore, the following definition makes sense.

3.3.3 Definition A maximal orthonormal set in a Hilbert space H is called an orthonormal
basis or a Hilbert basis of H.

3.3.4 Proposition Fvery Hilbert space H has an orthonormal basis.

Proof. Wothout loss of generality we can assume that H # {0}, because ¢J is a Hilbert basis for
{0}. Let O denote the set of orthonormal subsets of 3. As mentioned before, O is ordered by
set-theoretic inclusion. Let € < O be a non-empty chain. Put U = | Jgee S. Then U is an upper
bound of C. So by Zorn’s lemma O has a maximal element. O

3.3.5 Remark (a) By slight abuse of language we sometimes call an orthonormal family (b;)er
in a Hilbert space H an orthonormal basis or a Hilbert basis of H if the set {b; | i € I} is an
orthornormal basis.

(b) If on an orthonormal basis B < H a total order relation is given, one calls B an ordered
Hilbert basis of H. Likewise, an orthonormal basis of the form (b;);er is called ordered if the
index set I carries a total order.

3.3.6 Proposition (Pythagorean theorem for orthogonal families) An orthogonal fam-
ily (vi)ier in a Hilbert space H is summable if and only if the family of norms (||v;]);c; is square

summable. In this case one has )
| 2w
el

= > vl
el
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Proof. Assume that (]|v;),c; is square summable or in other words that the net of partial sums
(Xics HUiH2)JE% (1) converges to some s € R. For € > 0 choose a finite J. < I such that for all
finite J with J. < J < I the relation

= Y1l < S

e

holds true. For finite K < I with K n J. = (& one then obtains by the pythagorean theorem for
finite orthogonal families, Eq. (3.1.2)),

2
| S| = Dl <|s— X Il +]s - X Il?] <<
€K €K

eKuJe i€Je
Hence (3,c; Ui)Je?ﬁn(I) is a Cauchy net in I, so convergent.

Now let (v;)ie; be summable to v € H. Then there exists a J; € Pgn(I) such that for all finite
J < I containing J;
H’U — Z (Y

eJ
This implies by the pythagorean theorem for finite orthogonal families

9 2
Sl =) Yo < (Jo- 2o
ieJ ieJ ieJ

Therefore, the net of partial sums (3. ; [lvi]?)

<1.

2
+ Hv|> < (1 +[of)?

JePan(D) 18 bounded, so convergent since each term

|vi]? is non-negative.

By continuity of the inner product and pairwise orthogonality of the v; one finally obtains in the
convergent case

<ZvquJ> 2@,2@ NS vy = il -

Nl
i€l jel el ]

3.3.7 Proposition Let (v;)ier be an orthonormal family in a Hilbert space H. Then for every
v e I the family ((vi,v)),c; is square summable and Bessel’s inequality holds true that is

2
D Kvs )2 < of* .
1€l
Proof. Let J < I be finite. Then, by the pythagorean theorem for finite orthogonal families
2 2
0< o= = Jol? =23 Ko o) + | Yo opm| = ol = Y i, )12
i€J i€J 1€J 1€J
Therefore, for all J € Pgy, (1)

2 2
2, Ko oy < Jof* . (3.3.1)
ieJ
Hence, by Proposition the family (|{v;, v)|)ier is square summable. Bessel’s inequality now
follows from the observation that in Equation (3.3.1)) one can pass over to the limit of the net

2 2
) [ = . D
(Sies e wdP < ol?)
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3.3.8 Theorem Let B be an orthonormal system in a Hilbert space H. Then the following are
equivalent:

(1) The orthonormal system B is mazimal, i.e. a Hilbert basis.

(2) The orthonormal system B is total that is for allv e H such that {v,b) = 0 for allbe B the
equality v = 0 holds true.

(3) For everybe B let Hy = {rbe H | r € K}. Then the canonical map

i @DH = H, (o — Y, 0
beB beB

18 an isometric isomorphism.
(4) The closed linear span of B coincides with 3.

(5) For all ve H, one has the Fourier expansion

v = Z<v,b>b .

beB

(6) For all v,w € H, one has
(o) = 3, b0, w)

beB

(7) For all v e H, Parseval’s identity holds true that is

2 2
o] = > v, B .
beB
Proof. = . If v # 0, then [y 15 @ unit vector orthogonal to each v;. Hence {v} U B is an
orthonormal system which is strictly larger than B, contradicting|(1)

= . First note that by the pythagorean theorem for infinite families, Proposition m
the canonical map ¢ : é—jbe pHy — H is well-defined and an isometry. Hence ¢ is injective. It
remains to show that ¢ is surjective. To this end observe that im: is closed in H since ¢ is an
isometry (the image is complete). If ¢ is not surjective, then im + is not the zero vector space.

Choose v € im t+\{0}. Then v is orthogonal to each element of B, but v # 0. This contradicts
(2), so im¢ = K.

= We can represent any v € I in the form v = ¢ ((vp)peB) = Dpep Vb With (vp)ep €

@PpepHp. Write v, = 13, b for every b € B, where 1, € K is uniquely determined by wv. Then
compute using continuity of the inner product

(v, by = <Z Ve, by = Z rele,by =1y .

ceB ceB
Therefore,
v = Z rpb = Z<v,b>b :
beB beB
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5) = |(6)f Fourier expansion of v,w € H gives v = Y {v,byb and w = > <{w,bydb. Then, by
beB beB
continuity of the inner product,

(w,wy = > v, by, w) .

beB

= Let v € H. Then Y, {v,b)b € Span(B) for all finite J = B. By Fourier expansion v is
beJ

the limit of the net <Z (v, bYb , so v lies in the closure Span(B).
beJ JEPn(B)
= Assume that (v,b) = 0 for all b € B. By v can be written as a limit v = lim v,

where v, € Span(B) for all n € N. Then (v,v,,) = 0 for all n € N by assumption. By continuity
of the inner product this implies

[l = lim (v, va) =0,

sov =0.

[(6) = Put v = w. Then, by assumption,

[l = Cv, 0y = D 1w, b)Xb, 0y = D Ku, by

beB beB

= [T} Assume and that is not true. Then there exists v € H with |v| = 1 and
(v,by = 0 for all b e B. But then

[ol* = D} Kv,0)I* =0,

beB O

which is a contradiction.

3.4. The monoidal structure of the category of Hilbert spaces

3.4.1 Let K be the field of real or complex numbers. Hilbert spaces over K together with bounded
K-linear maps between them form a category denoted by K-Hilb or just Hilb if no confusion can
arise. This can be seen immediately by observing that the identity map 14¢ on a Hilbert space
is a bounded linear operator and that the composition B o A : H; — Hj of two bounded linear
operators between Hilbert spaces A : Hy — Hy and B : Hy — Hs is again a bounded linear
operator. We want to endow the category Hilb with a bifunctor & : Hilb x Hilb — Hilb so that
it becomes a monoidal category. The (bi)functor @ will be called the Hilbert tensor product.

Unless mentioned differently, Hilbert spaces, vector spaces and the algebraic tensor product ®
in this section are assumed to be taken over the ground field K.
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3.4.2 Proposition Let H, and Ho be two Hilbert spaces. Then there exists a unique inner
product (-,+) : (H1 ® Ha) x (H1 ® Ha) — K on the algebraic tensor product Hq ® Hy such that

(v @ v2, w1 ®wa) = (v, wy)-{va,wa) for all vi,w; € Hy, vo,wy € Ha . (3.4.1)

Proof. Let us first provide some preliminary constructions. Recall that for every pair of vector
spaces V1 and Vs the bilinear map

7 : Hom(V1,K) x Hom(Vg, K) — Hom(V; ® V3, K),
(A1, A2) = (Vi®Va = K, v1 Qg — A1(v1) - Aa(v2))

induces a linear map
7 : Hom(V1,K) ® Hom(Va,K) — Hom(V; ® Vs, K)

by the universal property of the tensor product. This map is an isomorphism. To see this choose
a basis (v1;)ier of V1 and a basis (vg;)jes of Va. Let (vy;)ier and (vy;)jes denote the respective

dual bases of V] and V;. Then (v’ll ® v§j>(‘ Vel is a basis of Hom(V1, K) ® Hom(V3, K) which
1,7)€I X

under 7 is mapped bijectively to the basis ((vy; ® U2j)l)(ij)e]><J of Hom(V; ® Vo, K) dual to the

basis (vy; ®v2J')(i DelxJ of V1 ® Vo. Hence T is a linear isomorphism as claimed, and we can

identify the tensor product Ay ® As of two linear functionals A; : V; — K, ¢ = 1,2 with its image

in Hom(V1 ® VQ, K)

Now observe that for two conjugate-linear maps p; : Vi — K and po : Vo — K the map
T*(p1, p2) = 11 @z : V1 ® Vo — K is conjugate-linear and satisfies

T (1, p2) (V1 ®v2) = p1(vy) - po(ve) for all vy € Vi, vy € Vy . (3.4.2)
One obtains a map
7 : Hom*(V1,K) x Hom*(Vg,K) — Hom*(V; ® V2,K) ,

where here the symbol Hom*(V, K) denotes the space of all conjugate linear functionals on a vec-
tor space V. Since 7* is biadditive and since 7*(zpu1, u2) = 7*(u1, zp2) for all 3 € Hom™*(Vy, K),
pa € Hom*(Va, K), and z € K, the map 7* factors through a linear map

7 : Hom*(V1, K) ® Hom*(Vy, K) — Hom™*(V; ® Vg, K) .

Using the above bases (vi;)ier and (vgj)jes of Vi and Vi respectively, one observes that T*

is an isomorphism since it maps the basis <’UTZ®@> )T of Hom*(V1,K) ® Hom*(Va, K)

bijectively to the basis ((vli @’Ugj)/)(' Jerxs of the space Hom*(V; ® Va,K). So 7* is also a
7,7)€l %
linear isomorphism, which allows us to identify the tensor product p ® ue of two conjugate linear

functionals u; : V; — K, ¢ = 1,2 with its image in Hom*(V; ® Vg, K).

After these preliminary considerations we consider the map

Hy x Hy — Hom* (H; @ Ha, K), (wy, ws) — w’ @ w), = 7 (w?,w%) =7 (E@@) ,
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which is well-defined and bilinear since the musical isomorphisms ” : H; — H, w — (w,—),
[ = 1,2, are conjugate-linear and since 7 is bilinear. Hence it factors through a linear map

,B . j‘fl ®9‘f2 g Hom*(ﬂ'fl ®j’(2,K)
such that
B(wi ® wa)(v1 ®ve) = (v, w1y - {va,wa)y for all vy, w; € Hy, vo,ws € Ha . (3.4.3)

Now put
(5 (Hr®@Ha) x (Ha @ Hz) — K, (v, w) = (v,w) := B(w)(v) .
Then {:,-) is sesquilinear by construction, and (3.4.1)) holds true by (3.4.3).
Let us show that (-,-) is positive definite. Let v = >;'_; v1x ® vop € H; ® Ha. Choose an

orthonormal basis eq,..., e, of the linear subspace spanned by woy,...,vs,. Expand vy =
Dt crie; with g, ..., cm € K. Then
n n m m
V=D vk ®@uap = Y > 01k ® (criei) = Z (2 Clmvuc) ®ei= ) w®e; (3.4.4)
k=1 k=1i=1 i=1 \k=1 i=1

where wi; = Y ;_ ckiv1x. Hence

(v,v) = <Z wi; & ey, Z w1 ®ej) = Z Z<w1uwlj><€zv €j) = Z Jwiil® = (3.4.5)

j=1 i=1j=1
Moreover, if (v,v) = 0, then wy; = 0 for ¢ = 1,...,m, which implies v = ", wi; ® ¢; = 0.
So (-,-) is an inner product on H; ® Hy satisfying (3.4.1). It is uniquely determined by this
condition since the vectors v| ® vo with v1 € H; and vy € Hy span Hy ® Ho. O

3.4.3 Definition Let H; and Hs be Hilbert spaces. The Hilbert completion of the algebraic
tensor product H; ® Hy equipped with the unique inner product {-,-) fulfilling will be
denoted H; ® Hy, its inner product again by {-,-). One calls the Hilbert space (3{1 ® Ho, (-, >)
the Hilbert tensor product of H; and Hy or just the tensor product of H; and Hs if no confusion
can arise.

3.4.4 Proposition Let Hy and Ho be Hilbert spaces.

(i) Let A1 € Hy and Ay < Ho be subsets which are total Hy and Hay, respectively. Then the
set of simple vectors a1 ® as with a1 € A1 and ag € As is total in the Hilbert tensor product
Hy ® Ho.

(ii) If (ei)ier and (f;)jes are orthonormal bases of 31 and Hz, respectively, then (€;®f;) (i jyerx.s
is an orthonormal basis of the Hilbert tensor product Hi ® Hs.

Proof. ad (7). Recall that a subset A < 3 or a family A = (a;) ;e of elements of a Hilbert space
H is called total in H if the linear span of A is dense in H. By density of the algebraic tensor
product H; ® Hs in the Hilbert tensor product H; ®j‘f2, the set of simple tensors v1 ® vy with
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(v1,v2) € Hy x Ha is total in H; ® H,. Hence it suffices to find for each such pair (v1,v2) and
all € > 0 vectors wy € Span A7 and wy € Span As such that

€
[v1 ® va — w1 @ wa| < 3

By totality of A; in H; there exist w; € Span A; for ¢ = 1,2 such that

9

€
1, —m— and |lvg —wsl| <
2( [l + 1)} | =3

[v1 — wq| <min{ —
(Joall +1)

Then
lv1 @2 — w1 @ wa| < 1 —wi [va] + vz — wafflwn ]| <€ .

ad (i1). The family (e;®f;)( j)erx.s is orthonormal by definition of the inner product on 3; ® Ho.
It is total by |(i)| and therefore a Hilbert basis. O

3.4.5 Proposition Assigning to each pair of Hilbert spaces Hi and Hsy the Hilbert tensor product
H, ® Hy and to each pair of bounded linear operators Ay : Hy — Hg and Ay : Ho — Hy between
Hilbert spaces the unique bounded extension Aq ®As : Hi®Hy — Hs®Hy of the operator
A1 ® Ay Hi @ Hy — Hy ® Hy, v1 @ vy — A1 (v1) ® Az(va) comprises a (covariant) bifunctor

® : Hilb x Hilb — Hilb .
Moreover, ® is isometric in the sense that

[v1 @ va| = [Jv1] |va||  for all vi € Hy, vo € Hy and (3.4.6)
[ A1 ® Ao = [Au]| |A2]l  for all Ay € B(31, Hs), Az € B(Ha, Hy) -

Proof. We first show that A1 ® As is a bounded operator. To this end observe that A; ® As can
be written as the composition of the two operators A; ® 1g¢, and 13, ® A2. Hence it suffices to
show that each of these linear maps is bounded. Let v = ZZ:I V1 ® Vo € Hi ® Ho be of norm
1. As in the proof of Proposition expand vop = D0, ckiei, k= 1,...,n, where ey, ..., ep is
an orthonormal basis of Span{vay,...,va,} and ¢, ..., ckm € K. Equations (3.4.4) and (3.4.5)
then entail that

m m
v = Z wy; ®e; and 1= {v,v)= Z w12
i=1 i=1

where wy; = > cgiv1g for i = 1,...,m. Hence
m 2 m m
[(A1 @ Tag, )ol* = | > Ar(wi) @ei| = Y. [Ar(wa)[* < AL D Jwuil* = |A1|*
i=1 i=1 i=1

so A1 ® 1y, is bounded with norm < |A;]|. By symmetry, 1g;, ® A is bounded with norm
< || Azl|. Hence A; ® Az = (1g¢, ® Az) o (A1 ® 1g¢,) is bounded and

[ A1 ® Ag|| < [|Au]|[[Az] -

124



I1.3. Hilbert Spaces 3.4. The monoidal structure of the category of Hilbert spaces

Therefore, A1 ® Ao has a unique bounded extension A; ® As of norm
A1 ® Ao|| = || A1 ® Ao|| < ||A1] | A2 -

Let us show that the converse inequality holds as well. For given € > 0 there exist unit vectors

V; € g'(:i, 1= 1,2 such that HAZU’LH = ||A1” — m Then

(A1 ® A2)(v1 @ v2)| = [Arv1] [A2va| = [As]l [A2] —€ .

This implies
|A1 ®Az| = |41 ® Aa| = | Ax]l | Az2]

and (3.4.7) follows. Equality (3.4.6) is clear by construction of the Hilbert tensor product.

Next observe that 1, ®]lg{2 = L4, g9, by definition. Given Hilbert spaces Hj,...,Hs and
bounded linear operators A; : H; — H;y1o and B; : H;10 — H;iq for ¢ = 1,2, the composition
(B1® B3) o (A1 ® Ag) coincides with (B0 A1) ® (Bgo Ag) by functoriality of the algebraic tensor
product. By continuity of the operators A1 ® Ay and By ® By and by density of H; @ Hy in
H; ® Hy the equality

(Bi®Bs) o (A1 ®As) = (B1 o A1) ® (By o Ay)
follows. Hence & is a bifunctor as claimed. O
3.4.6 Proposition For every Hilbert space H one has two natural isomorphisms
@}C:K@)U{—»J{, z®@v — zv  and g{@:fH&DK—n‘H, v® 2z — 20

called the left and the right unit, respectively. Furthermore, for every triple of Hilbert spaces
H1, Ha, Hs there is a natural isomorphism, called associator

A3, 30,965 © (Fa @ H2) ®Hz — H1 ® (H2®H3), (v1 ®@v2) ®vz — 11 ® (v2 @ v3)

These data fulfill the so-called coherence conditions that is the pentagon diagram

(H1 ®FH2) @ H3z) ®Hy

3¢, 96,76, ® 11/ \@Mﬂf

(H1® (Ha®FH3)) ®Hy (H1 ®Ho) ® (Hz ® Hy)
aﬂcl,ﬂiz ® Hs,Ha aﬂfl Ha,Hs @ Ha

H1®(Fa®H3) @FHy) ——— H1 ® (Ha ® (Hz ®Hy))

~

17{1 ® A3y, H3,Hy
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and the triangle diagram

a3y K, 95

(H1 ®K) ® Ho y Hi ® (KR Hy)

Hﬁm} mﬂz

H1 ®Ho

commute for all Hilbert spaces Hy, Ho, Hs, Hy. In other words, the category Hilb endowed with
the Hilbert tensor product ® is a monoidal category.

Proof. The category of K-vector spaces with the usual tensor product as tensor functor is
monoidal. Denote the corresponding unit isomorphisms and associator by _u, u_, and a_ _ _,
respectively. Then observe that by construction KH = K® H and HOK = H QK for
every Hilbert space . In particular this means that %4 coincides with the unit ug and u
with the unit gu. Moreover, both units g and 4 are bounded. Next recall that H; ® Ho
is dense in H; ® Hy which by Proposition implies density of (H; ® Hqe) ® Hz and H; ®
(Ho ® H3) in (H1 ®Ho) ®H3z and H; ® (Ha ®H3), respectively. Similarly one argues that
H; ® (Hao® (Hz ®Hy)) is dense in H; & (Ha ® (Hz ®Hy)), and so on. Since the associator map
as, 3,5+ (H1 @ Ho) @ Hy — Hy ® (Ho ® H3) is bounded, it extends in a unique way to a
linear bounded map as, 5, 9¢; : (H1 @)5{2) RHs — Hi1 ® (FHo @ﬂ{g). Using density, continuity,
and commutativity of the pentagon and triangle diagrams for the tensor product functor one
concludes that the coherence conditions for ® with the unit and associator maps _@, 4, and
a_,_ _ are satisfied. O

3.5. Adjoints of bounded operators

3.5.1 As before, the symbols H and H; with k = 1,2 always stand for Hilbert spaces over the
field K of real or complex numbers. Several results of this section hold only in the complex case,
thouhgh. Therefore we will be quite precise in stating all necessary assumptions, in particular
about the ground field.

Let A € B(Hq,Hs) that is let A : Hy — Hso be linear and bounded. Then the map
ba: Hy x He > K, (v,w) — (Av,w)
is sesquilinear and bounded with norm
[ball = sup { [a(v,w)| | ve I, we I, |w] = o] =1} =[A] .

By Corollary [3:2.8] to the Riesz representation theorem there exists a unique bounded linear
operator A* : Hy — H; such that

ba(v,w) = (v, A*w)y for all ve Hy, we H,y .

This operator satisfies
|A*[ = [bal = [A] . (3.5.1)
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3.5.2 Definition The unique operator A* € B(H,, H;) associated to an operator A € B(Hy, Hs)
such that
(Av,w) = (v, A*w) for allve H;i, we Hy

is called the adjoint of A.

The fundamental property of the adjoint operation is given by the following result.

3.5.3 Proposition The adjoint map * : B(Hy, Ha) — B(Ha, H1) is a conjugate linear isometry
whose square coincides with the identity operation that is A** = A for all A € B(Hq,Ho).

Proof. By the proof of Corollary A*w = (w, A(=)) for all w € Hy. Since the inner
product is linear in the second argument and the operator ? conjugate linear, the map A — A*
is conjugate linear in A. By Equation , the adjoint map is an isometry. The relation
A** = A follows by uniqueness of the adjoint and since

(A*w,v) = {w, Avy for all ve Hy, we Hy . O

3.5.4 Definition An operator A € B(H) is called self-adjoint if A = A*, unitary if A* = A™1
and normal if [A, A*] := AA* — A*A = 0.

We note that self-adjoint and unitary operators are always normal, but normal operators do not
have to be self-adjoint or unitary. In the remainder of this section, we gather several results on
self-adjoint and normal operators.

3.5.5 Proposition Assume that the ground field K of the Hilbert space H is the field of complex
numbers. An operator A € B(H) then is self-adjoint if and only if (Av,v) € R for all v e K.

Proof. (=) If A is self-adjoint, then
(Av,v) = (o, A*0) = v, Av) = (Ao, vy,

which implies that (Av,v) € R.
(<) Suppose that (Av,v) € R for all v e H. We know

(A(v 4+ w), v+ w) = (Av,v) + (Av, w) + (Aw, v) + (Aw,w) . (3.5.2)

By assumption, (A(v + w),v + w), (Av,v), and (Aw,w) are all real. This implies that the sum
(Av,w) + (Aw, v) is real as well, so

Im{Av,w)y = =Tm{Aw,v) = Tm{v, Aw) .
Since this holds for all w € H, it holds for iw, too. Thus,
Re (Av, w) = Tm i{Av,w)y = Im (Av, iw) = Tm (v, A(iw)) = Tm i{v, Aw) = Re (v, Aw) .

Combining the above two lines yields (Av, w) = (v, Aw) for all v,w € H. By uniqueness of the
adjoint this implies that A = A*. O
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3.5.6 Proposition Assume that the ground field K of the Hilbert space H is the field of complex
numbers and let A € B(H). If (Av,v)y = 0 holds for all ve H, then A = 0.

Proof. Since (Av,v) = 0 for all v € H, equation (3.5.2]) from the proof of Proposition
reduces to
(Av,w) = —(Aw, vy = —(w, Avy = —(Av,w) for all v,we H .

That means that (Av, w) has no real part for all v, w € H. But then fixing v and setting w = Av
implies |Av|? = 0 for all v € K, so A = 0. O

3.5.7 Example The preceding proposition does not hold in the real case. To see this take

rotation by :
T _&inT
o (85 sin 5
siny cos%
2 2

Then (Rv,v) = 0 for all v € R?, but R is non-zero. Note that the example of the rotation
operator R also shows that the criterion for self-adjointness from Proposition [3.5.5] can not be
applied in the real case.

3.5.8 Lemma (cf. (Hirzebruch and Scharlau), 1991, Lem. 22.4)) Assume that A is a bounded
linear operator on the real or complexr Hilbert space H for which there exists a C' = 0 such that

[(Av,v)| < Clv|*  for allve 3 .

Then
|[(Av, w) + (v, Aw)| < 2C|v||w| for all v,w e H . (3.5.3)

In case H is a complex Hilbert space one even has the sharper estimate
[(Av, wy| + [{v, Aw)| < 2C|v||w]  for all v,w e H . (3.5.4)
Proof. We start with the equality
(A(v 4+ w),v +w) + (A(v —w),v —w) = 2((Av, w) + (Aw, v)) . (3.5.5)

By assumption and the parallelogram identity (3.1.3]) this entails

2|(Av, w) + (Aw, v)| < C (v + w[? + o — w]?) = 20 (o[* + w]?) . (3.5.6)
The claim obviously holds for v = 0 or w = 0, so we assume from now on that both v and w are
non-zero. Then put a = M and replace in (3.5.6) v by ? and w by aw. One obtains

(Av, w) + (Aw,v)| < C <)Z(2 T ]awf) = 20|

which is the claim in the real case. If H is a complex Hilbert space, let x,y be complex numbers
of modulus 1. In the just proven estimate multiply the left side with |z| and replace w with yw.
This gives

|zy{Av, w) + G Aw, v)| = |z - [(Av, yw) + (A(yw), v)| < 20 v]|lw] . (3.5.7)
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Now write (Av,w) = re'? and (Aw,v) = se'¥ with r,s > 0 and ¢,v € R. Then put

T = @*i%(@ﬂb)) and y = 6*]%(@71/)))

With these values, (3.5.7) becomes
[{Av, wy| + [{v, Aw)| < 2C|v][w]
which was to be shown. O

3.5.9 Proposition If H is a Hilbert space over the field K of real or complex numbers and
A € B(H) is self-adjoint, then
|All = sup [(Av,v)]| .
lvll=1

Proof. We know
[Al = sup [{Av,w)[, (3.5.8)

lvl=lwl=1

so we clearly have

sup [CAv, )| < ||A] .
v||=1

The other direction follows from Equation (3.5.8) and Lemma since A is self-adjoint. [

3.5.10 Proposition If H is a real or complex Hilbert space and A € B(H), then A*A is self-
adjoint and |A*A|| = |A|*.

Proof. For arbitrary v, w € H, we have
(A* Av,w) = (Av, Aw) = (v, A* Aw)
so A*A is self-adjoint. Then

|A*A| = sup  [(A*Av,w)| = sup  [(Av, Aw)| = [ A]*

lvl=[wl=1 lvl=[wl=1
where the last equality is a consequence of the Cauchy—Schwarz inequality and the observation

that for all € > 0 there exists a unit vector v such that (Av, Av) = |A|? — e. O

3.5.11 Proposition Let H be a complex Hilbert space H. If A € B(H), then there exist unique
self-adjoint B,C € B(H) such that A = B + iC. Furthermore, A is normal if and only if
[B,C] =0.

Proof. We define

B:%(A+A*) and €= L(A*— 4)

Clearly A = B +iC. Note also that A* = B — iC. Furthermore, by Proposition |3.5.3

B*=%(A*+A)=B
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and

C* = —~(A—A*) =C.

i
2
Hence B and C' are self-adjoint, so fulfill the claim. Let us show uniqueness. Assume that
B',C" € B(H) are selfadjoint and satisfy A = B’ +iC’. Then

B-DB' =B*-B"=(i(C'"-C))"=-i(C"-C)=—(B-B).
Hence B = B’ and consequently C = C’. Finally, we compute
[A,A*] = [B+iC,B—iC] =—i[B,C] +i[C,B] = —2i[B,C] .
This entails that A is normal if and only if [B,C] = 0. O
3.5.12 Proposition If A is a normal operator on a real or complex Hilbert space H, then
|Av|| = |A*v|  for allve I .
Proof. Using the fact that A*A = AA*, we compute
|Av|? = (Av, Av) = (v, A* Av) = (v, AA*v) = (A*v, A*v) = |A*v|* .

Taking the square root yields the desired result. O

3.6. The lattice of orthogonal projections

3.6.1 In their celebrated article on quantum logic from 1936, Birkhoff and von Neumann|showed
that the set of closed linear subspaces of a Hilbert space carries the structure of a complete
orthocomplemented lattice. In this section, we will describe the Birkhoff-von Neumann lattice
structure. We start with the definition of orthogonal projections and the observation that the
space of orthogonal projections on a Hilbert space H is in bijective correspondence with the
closed linear subspaces of .

3.6.2 Definition By an orthogonal projection on a Hilbert space H one understands a bounded
self-adjoint operator P : H — H which is an idempotent that is it fulfills the relation

P?=P. (3.6.1)

3.7. Projection-valued measures and spectral integrals

3.7.1 In this section H will always denote a fixed complex Hilbert space.

3.7.2 Definition By a projection-valued measure or a spectral measure on a measurable space
(©, A) one understands a map E : A — B(H) having the following properties:

(SM0) For each A € A the operator E(A) is an orthogonal projection that is F(A)? = E(A)
and E(A)* = E(A).
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(SM1) E(Q) = idy.

(SM2) For every sequence (A, )nen of pairwise disjoint elements of A one has

b (U An) = S_Z:]()E(An) )

neN

where convergence is with respect to the strong operator toplogy.

3.7.3 Remark Recall that convergence of a sequence of operators (A, )neny € B(H) in the strong
operator topology to some A means that for every v € H the sequence (A,v)neny converges in H

e}
to Av. One denotes this by A = s-lim A,,. Likewise, B =s->, A, means that the sequence of
n—00

n=0

n
partial sums (Z An) converges in the strong operator topology to some B € B(H).
k=0

neN

3.7.4 Proposition A spectral measure E : A — B(H) has the following properties in addition
to the defining axioms:

(SM1") E(&) = 0.
(SM2") (Finite additivity) One has for all disjoint A1, Ay € A

E(Al U Ag) = E(A1) + E(Ag) .

(SM3) One has for all Aj,Ax e A

E(Al M Ag) = E(Al) . E(Ag) .

Proof. ad|(SM1')|
wd [V
ad|[(SM3)] O

3.8. Spectral theory of bounded operators

3.8.1 We now apply the foundations of Hilbert space theory built in the previous sections to
spectral theory. For the moment we will sacrifice generality and work only with bounded linear
operators. The spectral theory of unbounded linear operators will be treated later.

Let us a recall that a linear map A : H; — Hs between Hilbert spaces is continuous if and only
if it is bounded, i.e. has finite operator norm, and that B(%H;,Hs) is a Banach space with the
operator norm. For the rest of this section, H, Hy, Ho, ... will always denote complex Hilbert
spaces and A, B bounded linear operators. We will also now fix the base field to be complex, i.e.
K = C. Last we agree on writing Is¢ or just I for the identity operator on a Hilbert space H.
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Spectrum and Resolvent

3.8.2 Definition Let A : H — H be a bounded linear operator. A complex number A is then
called an eigenvalue of A if there exists a nonzero v € H such that Av = Av. For every A € C
one defines the A-eigenspace of A as

Eig\(A) = {ve H | Av = \v} c K,

which is clearly a linear subspace of H.

3.8.3 By definition it is immediately clear that
Eig,(A) = ker(4 — ),

where the A on the right stands for the operator AI. In other words this means that A € C is an
eigenvalue of A if and only if A — X is not injective.

3.8.4 Definition Let A € B(H). We make the following definitions.

(i) A regular value of A is a complex number A such that A — X is invertible.

ii) The set of all regular values is the resolvent of A, denoted o(A).

iii) A spectral value of A is a complex number A such that A — X is not invertible.

(
(
(iv) The set of all spectral values is the spectrum of A, denoted o(A).
(

v) The point or eigenspectrum of A is the set

op(A) = {A e C | ker(4 - X) # {0}}.

(vi) An approximate eigenvalue of A is a complex number \ for which there exists a sequence
of unit vectors (v, )neny < H such that

lim (A — A\)v, = 0.

n—0o0
The set 0,p(A) is the set of all approximate eigenvalues.

3.8.5 Evidently, 0(A) = C\o(A4) and op,(A) < 0ap(A) < o(A), and these may all be strict
inclusions. Note that A — X is bounded for any A € C, so the open mapping theorem 7?7 implies
that (A — X\)~1 € B(H) when ) € o(A). We call the map

Ru(A) : o(A) = B(3), Ry(4)=(A-N""

the resolvent of A, not to be confused with the resolvent set o(A). To keep the notation clean,
we often briefly write Ry for R)(A) and leave implicit that Ry depends on A.

First, we prove some topological properties of the spectrum and resolvent. Recall the following
lemma, which generalizes the geometric series.
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3.8.6 Lemma (Carl Neumann) Let A€ B(H). If |A| <1, then I — A is invertible,

0
-1 _ ZAH,
n=0

and
1

1— Al

[(T—a)7 <

Proof. Since |A| < 1 and ||A"| < |A|™ by submultiplicativity of the operator norm, we know
> o |A™| < oo. This implies that the family (A™),ey is absolutely summable, so >, A"
exists. Furthermore, for every N € N we have

N N N N+1
(I—A)) A" = (Z A") (I-A)=> A"— > A" =1- AN+,
n=0 n=0 n=0 n=1

which implies that

M=
M=

lim (I — A)

N—0o0

A" = lim ( A”) (I—A)=1
0 N—0o0

By continuity of multiplication in B(H) one gets

(I—Ai (ZA”) —A) =1,

n=0

n 0

n

which proves that I — A is invertible and (I — A)~! =" A"

Finally, one concludes by the triangle inequality and submultiplicativity of the operator norm
|7 -7 < Z A" < Z A" = HAH

3.8.7 Proposition Let A e B(H).

(i) For any X € o(A), one has
BHR)\”_I()\) c Q(A) .
Hence, o(A) < C is open.

(ii) The spectrum o(A) is compact and

O'(A) c BHAH(O) .

(iii) If the complex number X satisfies |A| > | A, then X € o(A) and

1 0
Ry=—+ - doatan
n=1

where convergence is with respect to the operator norm.
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Proof. ad (i). Fix A € o(A) and set r = |Ry|~". Let € B(\). Then
[(e = XN BA| = [ = Al Ral < 1.

Thus, by Lemma one knows that I — (u — \) Ry is invertible. Since A — A is invertible, the
composition

(A=X) (I = (= NEy) = A—p
is invertible, which proves that p € o(A). Hence o(A) is open.

ad (it). Since o(A) is open, the complement o(A) = C\p(A) is closed. Furthermore, if |\| > | A[],
then H)\_1A|| <1l,s0/l- A1 A and hence A — \ are invertible by Lemmam This implies that
A€ 9(A), so 0(A) = Bjy(0). Since o(A) is closed and bounded, it is compact.

ad (i). If |\| > ||A|, then I — A1 A is invertible by Lemma and

0
(I=XTta)h = amar
n=0

Since —A\(A — \)~! = (I — A7tA)~L, one obtains

> =

1 0 0
Ry = _X Z ANPAN = Z AfnflAn’
n=0 n=1

as desired. O

Next, we prove some algebraic properties of the resolvent. Hereby, [A, B] = AB — BA denotes
the commutator of two operators, as usual.

3.8.8 Proposition Let A, B € B(H). Then the following holds true.

(i)  The resolvent commutes with the operator which means that

[A,R\(A)] =0 forall Xe o(A) .

(ii) The values of the resolvent commute with each other that is

[RA(A),R.(A)] =0 for all A\, € o(A) .

(iii) (First resolvent identity) For all A, u € o(A)

RA(A) — Ry(4) = (A — i) Ra(A) Ry (4) |

(iv) (Second resolvent identity) For all A € o(A) n o(B)

R\(A) — R\(B) = R\(A) (B — A) R\(B) .
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Proof. ad (i). Obviously [A,A— A] =0, so
0= Ry[A, A — ARy = R\A — ARy,
as desired.
ad (iii). We compute
(Ba = Ru)(A—p)(A=A) = (RaA — pRy\)(A=A) — (A= 1)
= (A-p)RA\(A=X) = (A=)
=A- 122

where we used part to commute Ry past A in the second step. Now multiplying both sides
with RyR,, from the right yields the desired equality.

ad (). For A = p, one obviously has [A), A,] = 0. For A # p, one concludes from
R,— Ry Ry\—R

R, Ry, = —~ = E = R\R
TTER D /L_)‘ )‘_/L Ay,

so [Ry, Ru] = 0 for A # p as well.
ad (iv). The last equality follows by
RA(A) (B — A) Ry(B) = Ra(4) (B— ) — (A= N) Ra(B) = Ra(A)— Rx(B) . [

The resolvent Re(A) also has some nice analytic properties which we are going to prove next.

3.8.9 Proposition The resolvent Re(A) : o(A) — B(H), A — Ry is continuous and complex
differentiable with derivative given by

R,—R

Ro(A) : o(A) - B(H), A lim A =R’}

p—A = A
Proof. Fix A€ p(A) and € > 0. Let 0 < |u — A| < §, where

n( € 1 )
2|RA* 2181

Note that u € p(A) by Proposition Moreover, [(n— ANRy| < 1, so I — (u — N)R) is
invertible with norm less than (1 — ||(z — A)Ry||)~* by Lemma Now observe that the first
resolvent identity can be rearranged to

R, = R,\[I — (u— )\)R)\]_l .

Hence
[ = AL Ryl [ BA|
= A RAIP (1 = (= MR 7Y
_ = ARy
1= (= AR)|
e/2
1-12 ¢

[ Ry — Rall <
<
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This proves that A — R) is continuous.

As for complex differentiability, we simply use the first resolvent identity and continuity to

conclude R R,
lim —* T =
;_)n}\ A Hl_)HiR MO R)\ =

3.8.10 Proposition Let A € B(H). Then ARy — —I as |\| — . In particular, Ry — 0 as
|A| — o0.

Proof. Fix € > 0. For |A| > |A|, we have by Proposition

o0
ARy = —1 — Z AT A™,
n=1

Since
Al

’I'LATL
S P-4

one sees that ARy — —I as |\| — oo. Slmllarly, for [A\| > | A| one has

" LAl
R A<
1] < wZ“ S R ey

which shows that Ry — 0 as |)\\ — 0. O
3.8.11 Proposition For all v,w € H, the map
(Re(A)v,w): o(A) - C, A = (Ryv,w)
is holomorphic with derivative
(Ro(A)v,w)’ : 0o(A) = C, A > (Riv, w).
Proof. Given \ € p(A), we compute

lim (Ryv,wy — (Ryv,w) — lim {(p = NRuR\v, w)

=1
Jimny Y Jiany Y 1m<R Ry, w) = (R3v, w),

where we have used the first resolvent identity in the first step and continuity of the inner product
in the last. O

3.8.12 Proposition The spectrum of an operator A € B(H) is nonempty.
Proof. Suppose o(A) = &, hence p(A) = C. The map
C—C, A= (Ryv,w)
then is entire for every v, w € H. Furthermore, one has for v, ||w| < 1
[KRxv, w)| < |[Ral o]l Jw] < [RA] -

Since A — | Ry| is continuous and ||[Ry| — 0 as |\| — o0, one sees that ||Ry| is bounded. Hence
(Rev,w) is a bounded entire function, which by Liouville’s theorem implies that it is zero for
every pair v,w € H with |[v| = |w| = 1. This entails that Ry = 0 for every A € C, which is a
contradiction to Ry being invertible. Hence o(A4) # . O
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3.9. Unbounded linear operators

3.9.1 In this section let V, W always denote Banach spaces over the field K = R or K = C. The
symbols H, Hy, ... will always stand for Hilbert spaces over K.

3.9.2 Definition By an unbounded K-linear operator or shortly by an unbounded operator from
V to W we understand a linear map A : Dom(A) — W defined on a K-linear subspace Dom(A) <
V. As usual, Dom(A) is called the domain of the operator A. The space of unbounded K-linear
operators from V to W will be denoted £x(V, W) or just £(V, W).

3.9.3 Remark In this work, the term “unbounded” is meant in the sense of “not necessarily
bounded”. Sometimes we just say linear operator or even only operator instead of “unbounded
linear operator”.

3.9.4 Observe that besides the domain Dom(A) of an unbounded operator A € £(V, W) the
kernel
Ker(4) = {veV|Av=0}cV,

the image
Im(A) = {w e W | Jve Dom(A) : w = Av} c W,
and the graph
Gr(A4) = {(v,w) e Dom(A) x W |w = Av} € V x W

of A are all linear subspaces. We will frequently make use of this.

3.9.5 Definition An unbounded operator A € £(V, W) is called densely defined if Dom(A) is
dense in V, and closed if the graph Gr(A) is closed in V. x W. The operator A € £(V,W) is
called closable if the closure Gr(A) is the graph of an unbounded operator from V to W.

An operator A € £(V,W) is called an extension of B € £(V,W) if Gr(B) < Gr(A). One writes
in this situation B < A.
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4.1. Elementary Definitions and Properties
A C*-algebra is a Banach algebra with additional structure. We recall the definition of a Banach
algebra below.

4.1.1 Definition A Banach algebra is a Banach space A with an associative, bilinear multipli-
cation operation A x A — A, (a,b) — ab which is submultiplicative with respect to the norm:

bl < Jall 1B, Va,be A (4.1.1)
We say A is unital if there exists a unit 1 € A satisfying ||1| = 1 and
la =al = a, Vae A (4.1.2)

In a unital Banach algebra we can speak of inverses of elements, but not every element of a Banach
algebra is invertible. By an inverse we mean a two-sided inverse unless otherwise specified. We
write A* for the set of invertible elements in A.

We state without proof some obvious facts about Banach algebras.

4.1.2 Proposition Let A be a Banach algebra.
1. For all a € A, we have Oa = a0 = 0.
If A is unital, then the following hold.
2. The unit is unique.
. Inverses are unique.

. The additive identity is not invertible.

3

4

5. The multiplicative identity is its own itnverse.

6. If a,be AX, then abe A* and (ab)™! =b"ta"!.
7.

If a € A has a left inverse and a right inverse, then these inverses are equal, so a € A™.

4.1.3 Proposition The multiplication operation on a Banach algebra is continuous.

138



I1.4. C*-Algebras 4.1. Elementary Definitions and Properties

Proof. Take sequences (a,) and (b,) in A such that a, — a and b, — b. Using the triangle

inequality and (4.1.1)),

Jab — anbnll < lab — aby | + Jaby, — anbu] s
<laf b =bn[ + la — an] |bn
This manifestly approaches zero, so we conclude that a,b, — ab. O
4.1.4 Proposition If A is a Banach algebra and a € A™, then
la| =" < o™ (4.1.4)
Proof. By , we have
1= 1] =]a"a| < [a"|]al. (4.1.5)
The result follows by dividing by |al|. O
4.1.5 Proposition Inversion AX — A*, a — a~ ! is continuous.
Proof. Take a sequence (a,) in A* such that a,, —» a € A*. We compute
lo™ —az'| = |a™" (an — a)ay |
<[a™|lan — al Jaz '] (4.1.6)
<la™lan = al o[ + |~ [ lan = al ™" — a; 7]
Moving the rightmost term to the other side yields
(1= o™ lan = al) |a™* = 7] < Jan — ol Ja™ | (@.17)

For large enough n, the term in parentheses is nonzero, and we may divide by it, yielding

Ha—l o a—lH < ”CLn - CL” Ha’_1H2 ) (418)
" 1—a="] |an —af
The left hand side manifestly approaches zero, so we conclude a; ! — a1 ]

4.1.6 Definition A C*-algebra is a Banach algebra A with an antilinear star operation A — A,
a — a* satisfying

(i) nvolutivity: a** = a for all a € A,
(ii) contravariance: (ab)* = b*a™* for all a,b € A,
(i) the C*-property: |a*a| = |a|? for all a € A.
An element a € A is self-adjoint if a* = a.

A subset B ¢ A is a C*-subalgebra of A if B is a C*-algebra under the restrictions to B of all
operations defined on A. Equivalently, B must be a topologically closed subset which is closed
under all the operations on A. Topological closedness is equivalent to completeness. We say B
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is a unital C*-subalgebra of A if B is a unital C*-algebra and the unit in B is the same as the
unit in A

If S is a subset of a C*-algebra A, then the intersection of all C*-subalgebras of A containing S
is a C*-subalgebra, called the C*-subalgebra generated by S.

If A and B are C*-algebras, a *-homomorphism from A to B is a map 7 : A — B respecting the
algebraic operations on A and B. More precisely, 7 is a linear map satisfying

(4.1.9)

for all a,b € A. Notice that we do not require 7 to be continuous; we will show later that
this is automatically so. If A and B are unital, we say m is a unital x-homomorphism if 7 is a
#-homomorphism and 7(1) = 1. The terms *-isomorphism and #-automorphism will be used in
the natural sense.

4.1.7 Proposition If A and B are C*-algebras and m : A — B is a #-isomorphism, then

7Y B — A is a #-isomorphism. If  is unital, then so is 7~ 1.

Proof. We know from linear algebra that 7! is a linear map. Given a,b € B, let a/,b’ € A such
that m(a’) = a and 7(b') = b. Then

7 Hab) = 7w (a7 () = 7 L (w(dV)) = 'V = 771 (a)m (D)
4.1.10
71‘_1((1*) _ 71‘_1(71’((1/)*) _ 7_‘_—1 W(a,*)) =a'* = 71‘_1((1)*. ( )
If 7 is unital, then 7(1) = 1, so 7~ (1) = 1 as well. O

We will study #-homomorphisms more in a later section, for now focusing on properties of
elements of C*-algebras.

4.1.8 Definition If A is a C*-algebra, a subset B < A is a Banach subalgebra of A if it is a
Banach algebra under the restrictions of all operations defined on A. Equivalently, B must be a
topologically closed subset which is closed under all the operations on A. Topological closedness
is equivalent to completeness. We say B is a unital Banach subalgebra of A if B is a unital
C*-algebra and the unit in B is the same as the unit in A. T pray I never have to consider a case
where B is a Banach subalgebra of A and has a different unit from A.

If S is a subset of a Banach algebra or C*-algebra A, then the intersection of all subalgebras of
A containing S is a (Banach or C*) subalgebra, called the subalgebra generated by S.

A (unital) C*-subalgebra is a (unital) Banach subalgebra B < A which is closed under the star
operation.

!The unitization of a unital C*-algebra (discussed in a later section) provides an instance where we have a unital
C*-algebra and a C*-subalgebra which has a different unit.
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4.1.9 Definition Let A and B be C*-algebras. A x-homomorphism is a linear map 7 : A —> B
such that
m(ab) = 7w(a)w(b)
m(a*) = m(a)*

for all a,b € A. In other words, 7w respects all algebraic operations on A and B. Note that we
do not require 7 to be continuous. We will use the terms #-isomorphism and #-automorphism in
the natural way.

(4.1.11)

We will study *-homomorphisms more in a later section. For now, let us establish a few more
basic properties of C*-algebras.

4.1.10 Proposition If A is a C*-algebra, then 0 is self-adjoint. If A is unital, then 1 is self-
adjoint as well.

Proof. For all a € A, we have
0+a=0"4+a" =(0+a")* =a*"" =a. (4.1.12)
Hence, 0* = 0 by uniqueness of the additive identity. Furthermore,
1*a = 1%a™* = (a*1)* = a™* = a, (4.1.13)
from which it follows that 1 is self-adjoint by uniqueness of the multiplicative identity. O

4.1.11 Proposition Every a € A has a unique expression in the form a = ai + ias, where ay
and ag are self-adjoint.

Proof. This is evident upon setting a1 = (a + a*)/2 and a2 = (a — a*)/2i. If a = a} + id}, for
some self-adjoint af, a}, then a; — a} = i(a}, — az), which can be self-adjoint only if it is zero. OJ

4.1.12 Proposition Let A be a nontrivial C*-algebra. If there exists 1 € A satisfying
la =al = a, Vae A, (4.1.14)
then |1]| = 1, i.e. A is unital.
Proof. Setting a = 1 in the C*-property yields
1) = 1*1) = J)>. (4.1.15)

Hence, |1] = 0 or |1 = 1. If |1| = 0, then 1 = 0, so that A = {0}. Since A is nontrivial by
hypothesis, this cannot be the case, so |1 = 1. O

4.1.13 Proposition Let A be a unital C*-algebra and let a € A*. Then a* € A* and

(a*)™! = (a7 h)*, (4.1.16)

Proof. We compute
a*(a™)* = (a7 ta)* =1 = (aa™1)* = (a7 H)*a*, (4.1.17)
which proves the result. O
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4.1.14 Proposition If A is a C*-algebra and a € A, then

[a®] = fal- (4.1.18)

Proof. The conclusion is trivial if a = 0, so suppose a # 0. The C*-property and submultiplica-
tivity yield
2
la|” = [a*a] < |a] |a®] - (4.1.19)

|

Dividing by |[la| yields |a| < |a*|. Applying this result to a* yields ||a*| < |a**| = |a]|. O

4.1.15 Corollary The star operation A — A, a — a™* is continuous.

Proof. This is immediate from Proposition [4.1.14 O

We conclude this section with several examples.

4.1.16 Example The complex numbers C give a fairly trivial unital C*-algebra.

4.1.17 Example The bounded linear operators B (H) on a Hilbert space H are the prototypical
example of a C*-algebra. The star operation is given by the adjoint. Note that this is, of course,
a unital C*-algebra.

4.1.18 Example In a similar vein to the previous example, the set M, (C) of n x n matrices
with complex entries is a C*-algebra, where the star operation is given by Hermitian conjugation.

4.1.19 Example Let X be a compact Hausdorff space and let C'(X) be the space of continuous
functions X — C. This is a unital C*-algebra with the norm given by the supremum norm and
the star operation given by complex conjugation. We note that

Ifgll = sup|fg| < sup|f]-suplg| = |f]]g] (4.1.20)
xeX xeX xeX
and ,
1771 = sup | £I2 = (sup |f|) 1712, (4.1.21)
reX xeX

so that this satisfies the nontrivial properties of a C*-algebra.

4.1.20 Example Let X be a locally compact Hausdorff space and let Cy(X) be the space of
continuous functions f : X — C which vanish at infinity, meaning for every € > 0 there exists a
compact K < X such that |f(z)| < e for = ¢ K. This space is a C*-algebra with the supremum
norm and the star operation given by complex conjugation. If X is not compact, then this is a
non-unital C*-algebra.
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Finite Direct Sums

Let Ai,..., A, be a finite collection of Banach algebras. We define the direct sum

n
@Az = {(al,...,an) :aieAi} (4122)
i=1

with addition and multiplication defined componentwise. If Ay,..., A, are C*-algebras, define

the star operation on A componentwise as well. Finally, set

(@, an)]| = max (fa] ..., |an])- (4.1.23)

We want to show that the direct sum so defined is a Banach algebra. It is easy to check
that the norm above is indeed a norm using the properties of the max and the definition of
the norms on A4;. Submultiplicativity also follows easily from submultiplicativity of the norms

on the A;. If (a1 k,...,ank)ken is a Cauchy sequence in the direct sum, then each sequence
(@i % )ken is Cauchy, hence convergent, in A; for ¢ = 1,...,n. If a;;, — a; for each i, then
(@i, ank) — (ai,...,a,) by definition of the norm on the direct sum. Thus, @], 4; is

complete, and is therefore a Banach algebra. If each A; is a C*-algebra, it is again easy to check
that @], A; is a C*-algebra using the properties of the C*-algebras A;.

We may also define the direct sum of a sequence of Banach algebras or C*-algebras {A4,}

neN"
We define ”
P A, = {(an)neN ap € Ay and lingO lan| = O} (4.1.24)
n=1 n-
Again, the algebraic operations are defined componentwise and the norm is defined by
[(an)nen| = max |an,| . (4.1.25)
neN

The definition of @;-_; A, ensures that the max exists.

One easily checks that this satisfies all algebraic properties of a Banach or C*-algebra, but
completeness is more subtle. If a; = (an k)nen € @Zo:l A, and (ag)gen is a Cauchy sequence in
the direct sum, then it follows in the same way as before that the sequence (a, )ken is Cauchy
in A;, hence convergent with limit a, 1 — a, € A,. We must show that lim,,_, |a,| = 0. For
any n, k, K € N, we have

lanll < llan = an il + lank = an x| + lan x| < lan = ankl + lar = ar| + lan x| (4.1.26)

Fix € > 0. Since (ay)ken is Cauchy, we may choose K € N such that k, ¢ > K implies ||ay — a/| <
£/3. We may choose N € N such that n > N implies |a, x| < €/3. Finally, for any n > N,
we may choose k > K such that [|a, — a, x| < ¢/3. Thus, for n > N, we have |a,| < ¢, so
lim;, o0 |lan| = 0.

Finally, we show that a — a := (ay)pen. Fix € > 0. Choose N € N such that |a,| < /2 if
n = N. Choose K € N such that k,¢ > K and n < N implies

5
lar — ag| < 3 and |an, —an k| <e. (4.1.27)
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Then for k > K, we have

). (4.1.28)

|a —ak| < max (5,1;{1;}{{( |an — an k|

But for n = N we may choose ¢ large enough such that

lan — an il < lan —anel + |ar—ag| <e. (4.1.29)

Thus, ||a — ag| < ¢, so a — a. This proves that the direct sum is complete.

Both of these constructions come equipped with natural algebra homomorphisms ¢; : 4; - P A,
satisfying the following universal property. If B is another Banach or C*-algebra with algebra
homomorphisms f; : A; — B, then there exists a unique algebra homomorphism f: P A, — B
such that the diagram

T / (4.1.30)
A;

commutes. We define

fla) =" fi(mi(a)) (4.1.31)

4.2. Spectral Theory

4.2.1. Spectral Theory in Banach Algebras

Throughout this section, let A be a unital Banach algebra. We actually do not need to require A
to be a C*-algebra for the foundations of spectral theory, but the existence of a unit is essential.
We will adopt the shorthand of writing A for Al for all A € C.

4.2.2 Definition Given a € A, we define the resolvent set of a as
pla) ={AeC:A—ac A"} (4.2.1)
An element of p(a) is called a regular value of a. If p(a) # @, the map r, : p(a) — A defined as
ra(A) = (A —a)™? (4.2.2)

is called the resolvent of a.

Likewise, we define the spectrum of a as
o(a)={AeC:A—ag¢ A"} = C\p(a). (4.2.3)

An element of o(a) is called a spectral value of a. If o(a) # @, we define the spectral radius of a
as

r(a) = sup |A|. (4.2.4)
Aeo(a)
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A priori we do not know that p(a) or o(a) is nonempty. The following exposition will establish
that in fact both of them are nonempty, so the resolvent r,(\) and the spectral radius r(a) are
always defined.

4.2.3 Theorem Let a€ A. If A€ C such that ||la| < |)|, then the Neumann series > _,(a/\)"

converges, A € p(a), and
0¢]
%2 ( ) (4.2.5)

Furthermore,
1

Al = llal

Proof. We begin by showing that the sequence of partial sums is a Cauchy sequence. Given

M, N e N with M < N, we have
M)H Cﬂf 27

S-S S e

where we have used submultiplicativity in the last step. Since |al|/|A| < 1, the rightmost
expression can be made arbitrarily small by taking M and N to be large. Thus, the sequence of
partial sums is Cauchy, hence convergent, since A is complete.

[ra(N)] < (4.2.6)

Now, for any N € N, we have

=i @RS @ e-e--@ s

Submultiplicativity and |a/A| < 1 imply (a/A)™ — 0. Thus, taking the limit as N — oo of the

above line yields
a1 @] -5 600 120

as desired.

Finally, we note that for NV € N, using the formula for a geometric series yields

13 Jal 11 1
AZ() IMZ<IA|) ST Jal /N = = Jal’ (4.2.10)

Taking the limit as N — oo yields (4.2.6]). O

The following corollary rephrases some of the key points of the above theorem.

4.2.4 Corollary Given a € A, the resolvent set p(a) is nonempty and
r(a) < |al. (4.2.11)

4.2.5 Corollary Given a € A, the resolvent rq : p(a) — A is continuous.
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Proof. Since p(a) # @, the resolvent is defined. Continuity then follows from continuity of
addition, scalar multiplication, and inversion. ]

4.2.6 Corollary Let a € A and Ao € p(a). If |X — Xo| < [ra(Xo)| ™", then X € p(a) and

e}
(Ao — N (Xo)" L. (4.2.12)

n=0

In particular, it follows that
By, )~ (A0) < pla) (4.2.13)

for all Ao € p(a), so p(a) is open in C.

Proof. Let |A — Aol < [ra(Ao)| ™. Then [[(Ao — A)ra(Ao)| < 1, 50 1 — (Ao — A)7a(Xo) is invertible
by Theorem Since \g — a is invertible, the product

M —a)[1—(Ao=Nre(N)]=X—a—(A—A)=A—a (4.2.14)

is also invertible, so A € p(a). Furthermore, using the Neumann series for the inverse of 1 — (Ao —
A)ra(Ao), we obtain
ra(A) = [1 = (Ao = M)ra(X0)] " ra(No)

(Ao — A)"%(N))"] Ta(Ao)

I
18

. (4.2.15)
0
= Y1 (Ao = N)"ra(Xo)"
n=0
as desired. O
In a similar vein, we have the following Corollary.
4.2.7 Corollary The set A* is open in A.
Proof. Let a € A* and let b e A such that |b—a| < Hailﬂfl. This implies that
I1=ba™'| < a—b]|a"| <1, (4.2.16)
so 1 — (1 —ba~') =ba~" is invertible, which implies b is invertible. O

Having studied a few properties of the resolvent set, we now turn to the spectrum. In particular,
we want to show that the spectrum is nonempty. We will be aided by a few algebraic properties
of the resolvent. We denote the commutator of two elements a,b € A by [a,b] = ab — ba.

4.2.8 Lemma Let a € A. For all A\, u € p(a), we have:
(i) [a,ra(N)] =0,
(i) 7a(p) —7ra(X) = (A = p)ra(p)ra(X)
(iii) [ra(A),ra(p)] = 0.

146



I1.4. C*-Algebras 4.2. Spectral Theory

Proof. (i). It is clear that [A —a,a] = 0. So, since r,(A) = (A —a)~!, we have
0=7r.(N)[A—a,a]ra(N) = ra(N)a — ara(X) = [ra(N), al. (4.2.17)

(ii). We compute
[ra(p) = ra(N] (A = a)(p — a) = ra(p)(X = a)(p — a) — (n —a)
=A—a)—(p—a) (4.2.18)
=A—pu.

We used the fact that [rq(p), A —a] = 0 in the second step. Multiplying by 74 (u)rq(A) on the
left now yields the desired result.

(iii). If A = p, the result is trivial. If A\ # u, we may divide both sides of (ii) by A — p to obtain

ra(p) — ra(N) .

ra(i)ra() = " (4.2.19)

The right hand side is invariant under exchange of y and A, so the result follows. O
4.2.9 Lemma Leta € A. If f is in the continuous dual A*, then for, : p(a) — C is holomorphic

Proof. Let A € p(a). For any p € p(a), u # A, we have
fra(pw) — f(ra(N)) _ f(ra(u) —7a(})

) — F(ra()ra(N). (4.2.20)

= A w— A
Since f and r, are continuous, the limit of the above as p — A exists and is
(Fora) (V) = —F(ra(V)?). (4.2:21)
This proves that f or, is holomorphic. O

4.2.10 Corollary Given a € A, the spectrum o(a) is nonempty and compact.

Proof. We know o(a) is closed and bounded since p(a) is open and r(a) < |la, so it just remains
to show that o(a) is nonempty. If o(a) = @, then p(a) = C, so f or, is entire for all f e A*.
Since f is bounded, we have

[(fora) N < [ £ ra(M]- (4.2.22)

Furthermore, since A — |74(\)| is continuous, it is bounded by a constant for |A| < 1 + |la| by
the extreme value theorem. For |A| > 1 + ||a|, we have a bound from the Neumann series:

1
<1 (4.2.23)

lraWI € =7 s L
Al = ol

Thus, f or, is bounded and entire, so by Liouville’s theorem it is constant. But if u # A, then
ra(p) # rq(N), for otherwise we would have

0=rg(p) —1a(A) = (A= p)ra(p)rq(N), (4.2.24)

which would imply that r,(p) = rq(A\) = 0, but 0 is not invertible. By the Hahn-Banach theorem,
there must be some f € A* such that f or, is not constant, which is a contradiction. Therefore
p(a) # C. o
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In fact, using Lemma we can say exactly what the spectral radius p(a) is.
4.2.11 Theorem Let a € A. The spectral radius is given by

r(a) = lim la™ M, (4.2.25)
where the limit on the right hand side is guaranteed to exist.

Proof. The result is trivial if a = 0, so assume a # 0. We will show that
limsup |la”| "™ < r(a) < liminf |a"|"", (4.2.26)
which immediately yields the result.
Suppose A € o(a). If A" € p(a™) for some n € N, then
N —a" = A—a) NP+ A 2a 4+ Aa" T+ aTY) (4.2.27)

is invertible. Let b be the rightmost term in parentheses and note that b commutes with A — a.
But then
A=a)b(\* —a") P =1=(\"—a")"b(\ - a), (4.2.28)

so A — a has a left inverse and a right inverse. Hence A — a has a two-sided inverse, so A € p(a),
which is a contradiction. Therefore A" € o(a™). Since p(a™) < [a™|, we see that

Al = (A < flam] (4.2.29)
This is true for all A € p(a) and n € N, so

pla) < inf la™ Y™ < liminf o™ Y™ . (4.2.30)
ne

To prove the other half of (4.2.26]), suppose p(a) > 0, let f € A* and consider the function
g : Byg)-1(0) — C defined as

g\ = {f(T“(AI» A#0 (4.2.31)

If p(a) = 0, we may define g in this way on all of C. This function is holomorphic on the
deleted disk B,(,)-1(0)\{0} by Lemma and the fact that A — A~! is holomorphic on C\{0}.

Furthermore, for |A| < |a ™! /2, we have

A AT

O < W re O < e = T el

< 2[lF AL, (4.2.32)

S0 ¢ is continuous at zero. It is then a consequence of Morera’s theorem that g is holomorphic
on the whole disk B,(,)-1(0).

1 . . .
Furthermore, for 0 < |A| < [la|™", we can use the Neumann series to obtain a power series
expansion:

g(\) = f<)\ > (m)”) = A flamAan. (4.2.33)
n=0

n=0
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Since g is holomorphic on B,y-1(0) or on C if p(a) = 0, the above gives its power series
expansion on its entire domain by the unique representability of g by a power series. The radius
of convergence of this power series is therefore at least p(a)~!, so the series converges absolutely
for every \ in the domain of g. Hence, for any f € A* and A € C with |\| < p(a)~!, the sequence
A" f(a™)| is bounded as n varies across the natural numbers.

Recall that the map ¥ : A — A** defined as ¥(a)(f) = f(a) is a linear isometry. Then the
boundedness of |\" f(a™)| for all f € A* indicates that the family ¥(A"a™) is pointwise bounded.
By the uniform boundedness principle, the family ¥(A\"a™) is uniformly bounded, i.e. for each A
there exists My > 0 such that

A" f(a™)] < My, (4.2.34)
for all f € A* with ||f| < 1. By the Hahn-Banach theorem, there exists f € A* with |f] <1
such that |f(a™)| = |a™||. Thus, we have |A|" [a™| < M) for all n € N, or

la™ ™ < MY, (4.2.35)

assuming || > 0. Taking the limit supremum of both sides yields

lim sup || a”| Y™ < limsup M,/"|A| 7! = lim MY = A7 (4.2.36)

If p(a) = 0, this is valid for all |A] > 0, which implies lim sup HanHI/" =0 = p(a). If p(a) > 0,
this is valid for all [\|~! > p(a), which implies that

lim sup o™ < p(a), (4.2.37)

as desired. O

The proof that r(a) < liminf |a”|"™ in Theorem [4.2.11| contains some interesting observations
worth highlighting.

4.2.12 Lemma If ay,...,a,,b€ A such that

b=aias- - ap, (4.2.38)
and [a;,aj] = 0 for all i, j, then b is invertible if and only if each a; is invertible.
Proof. 1t is obvious that b is invertible if each a; is invertible. If b is invertible, then for any

1 < n, we have
<b_1 H@) a; = b_lb =1= bb_l = Q4 (H aj> b_l. (4.2.39)

VES J#i

Thus, a; has a left inverse and a right inverse, which must be equal. O

4.2.13 Theorem Letp =3, a;2" be a complex polynomial and let a € A. Then

a(p(a)) = p(o(a)). (4.2.40)
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Proof. Fix A € C and factorize A\ — p(a):

A=p(z) =B [(Bi—2) (4.2.41)
i=1
for some By, ..., B, € C. Then
A—=pla) =B [ [(Bi —a). (4.2.42)
i=1
By Lemma [4.2.12) A € o(p(a)) if and only if §; € o(a) for some ¢ = 1. But there exists i > 1
such that (8; € o(a) if and only if X € p(o(a)), so we’re done. O

Theorem [4.2.13] gives one example of how algebraic manipulations in A affect the spectra of the
elements being manipulated. Let us give more results in this vein.

4.2.14 Theorem Ifa,be A, then
o(ab) u {0} = o(ba) U {0}. (4.2.43)
If a e A*, then
ola™) = o(a)™t. (4.2.44)
Proof. Suppose A € p(ab). Then using (A — ba)b = b(A — ab) we compute
(A —ba)[1+ b(A—ab)ta] = (A — ba) + ba = A. (4.2.45)
and likewise
[1+b(\—ab)"ta] (A —ba) = (A — ba) + ba = \. (4.2.46)

Therefore A € p(ba) if A # 0. Of course, the same result holds with a and b switched. In other
words,

p(ab)\{0} = p(ba)\{0} (4.2.47)
Taking complements yields (4.2.43)).

If a € A*, then clearly 0 ¢ o(a) and 0 ¢ o(a™!). If A # 0, then

A —a=xta(a7t = N), (4.2.48)
which implies A~! € o(a) if and only if A € o(a™!) by Lemma [4.2.12] Since A~! € o(a) if and
only if A € o(a)™!, this is the desired result. O

4.2.15. |

Spectral Theory in C*-Algebras|Spectral Theory in C*-Algebras

We continue where we left off in the previous section by showing how the spectrum behaves with
respect to the star operation. We now let A be a unital C*-algebra for the rest of this section.
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4.2.16 Proposition Let a€ A. Then
o(a*) = o(a)*. (4.2.49)

Proof. We note that A — a™ is invertible if and only if A — a™ is invertible by Proposition |4.1.13
Hence, A € o(a*) if and only if A\* € o(a) if and only if A € o(a)*. O

We now investigate the spectra of several special classes of elements of A.

4.2.17 Definition An element a € A is
(i) normal if [a,a*] = 0,
(ii) an isometry if a*a = 1, and
(iii) wnitary if a*a = aa* =1, ie. a € A and a~! = a*.
Note that both unitary and self-adjoint elements are normal. Furthermore, if a is an isometry
or a unitary, then |a| = 1 by the C*-property.
4.2.18 Corollary If a € A is normal, then p(a) = |a.
Proof. We claim that
on 2 gn+1
Ja®" " = lal* (4.2.50)

for all normal a € A. For n = 0 this is trivial. Suppose it is true for some n = k — 1 where k € N.
Using normality of a, the C*-property, and the fact that a*a is self-adjoint, we compute

= ) - o]
112 . - (4.2.51)
= @] = Ja*al” = Ja”".
This proves (4.2.50). Now, using the formula for the spectral radius, we obtain
Y on 12" . onjon
r(a) = lim [a®"["" = lim fa|*/*" = Jaf , (4.2.52)
as desired. O
4.2.19 Corollary If a € A is isometric, then r(a) = 1.
Proof. We note that
la™* = |(a™)*(@™)] = I(@*)"(@)] = 1] = 1. (4.2.53)
Thus,
I nyl/n _ q: _
r(a) = lim fa"[" = lim 1 =1, (4.2.54)
as desired. O

4.2.20 Corollary If a € A is unitary, then o(a) = S*.
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Proof. We have
o(a)! = o(a™t) = o(a*) = o(a)*. (4.2.55)

Thus, if A € o(a), then A1 = p* for some € o(a). Since r(a) < 1, we know 1 < |A|71 = || < 1,
so [Al =1. O

4.2.21 Theorem If a € A is self-adjoint, then
o(a) < [=al, |al]- (4.2.56)
In particular, o(a®) = o(a)? < [0, |a]?].

Proof. Let A € R such that A™' = [iA™!| > [a|. Then A~! € p(a), so 1+ ida = —iA(IA™! —a) is
invertible. Note that (1 +iXa)* = 1 — iAa is invertible as well. Define

u=(1—iXa)(1+ixa) L. (4.2.57)

Observe that u* = (1 —iXa)~'(1 +iXa). Using the fact that 1 —i\a commutes with 1 + i\a, we
see that
w*u = (1 —ixa) (1 +iXa)(1 —iXa)(1 +ixa)"! = 1. (4.2.58)

Since w is the product of two invertible elements, we know u is invertible, and the above shows
that v~! = u*, so u is unitary.

Given p e C, pu # iA~t, observe that

1—i 14+ AJmpu)? 2
’ |)\u‘:\/( + ATmp)? + (A Rep) (4.2.59)

1+iAp

which equals 1 if and only if Jmu = 0, i.e. u € R. Since o(u) = S!, we see that if y € C\R, then
(1 — i ) (1 + i p)~t € p(u). In particular, if g # iA~!, then
(1 —id) (L4 idp) ™ —w = (14 idp) (1 = idp) (1 + ida) — (1 + idp)(1 —ida)] (1 +ira) ™"
= 2N1 +idp) " Ha— p)(1 +ixa) "L

(4.2.60)
If u e C\R, then the left hand side is invertible, so u — a is invertible, so p € p(a). Furthermore,
ix~! ¢ o(a) since [iA"| > [a]. Thus, o(a) < R. O

4.2.22 Corollary Ifa€ A, then
lal| = v/7(a*a). (4.2.61)

Hence, the norm is completely determined by the algebraic operations, i.e. the C*-norm is unique.
Proof. Note that a*a is normal, so

lal? = |a*a| = r(a*a). (4.2.62)
The result follows by taking a square root. O

4.2.23 Theorem (Spectral Permanence) Let B be a unital C*-subalgebra of A. For any
a € B, the spectrum of a in B is the same as the spectrum of a in A.
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Proof. Let us temporarily use the notation o4(a) and op(a) to distinguish the spectrum of a
in A and B respectively. We shall use the notation ps(a), pg(a), ra(a), and rp(a) similarly.
If A€ oa(a), then X\ — a is not invertible in A, so A — a is certainly not invertible in B. Thus,
oa(a) € op(a).

The reverse inclusion op(a) < o4(a) is trivial if a = 0, so suppose a # 0. It is easy to check
that op(a) < o4(a) follows from the inclusion B n A* < B*, and this is what we will show.
First suppose a € B n A* and a is self-adjoint. Let Ao = 2i |al| and note that Ao € pp(a) since
|Ao| > [la|. We know from Corollary that B ()\O)”—l(AO) c pp(a); thus we want to show

that 0 € Bl\ra(/\o)H’l()‘O) to show that a € B*.

Ira

Observe that self-adjointness of a implies that r4(A\g)* = ra(A§), from which it follows that r4(Ao)
is normal since [rq(N),74(p)] = 0 for all A\, u € pp(a). Normality then yields

|7a(Xo)ll = ra(ra(Ao))- (4.2.63)
But we also know that
ga(ra(X)) = ca(ho—a)™" = [Ao —oala)] ™ (4.2.64)
Hence,
ra(ra(Xo)) = dist()\o,aA(a))_l. (4.2.65)

But since A is purely imaginary and o4(a) € R, we know that dist(Ag,04(a)) = |No|! In fact,
we know 0 ¢ 0 4(a) since a € A*, so this is a strict inequality and taking inverses yields

I7a(Xo)| = dist(Xo, o4(a))™ < [Ao| (4.2.66)
This implies 0 € BHra(Ao)H_l (Mo), proving the theorem for self-adjoint a.

Finally, consider a € B n A*, not necessarily self-adjoint. However, we see that a*a € B n A%
and a*a is self-adjoint, so a*a € B*. Defining

b= (a*a) la*, (4.2.67)

we see that ba = 1, so b = a~! since a was assumed to be invertible in A. Since b € B manifestly,

we conclude that a € B*, as desired. O

Let us now consider how the spectrum of an element behaves under #-homomorphisms.

4.2.24 Proposition Let A and B be unital C*-algebras and let m : A — B be a unital *-
homomorphism. Then w(A*) < B* and

m(a™h) = n(a)! (4.2.68)
for all a e A*. If w is bijective, then w(A*) = B*.
Proof. Let a € A* and observe
e Vr(a) = (e ta) =7(1) =1 =7(1) = n(aa™ ") = n(a)w(a™t). (4.2.69)

This proves that 7(a) € BX and 7w(a)™! = n(a™1). If 7 is bijective, then 771(B*) = A by the
same argument, so 71 (B*) = BX < m(AX). O
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4.2.25 Proposition Let A and B be unital C*-algebras and let m : A — B be a unital *-
homomorphism. Then
o(m(a)) € o(a) (4.2.70)

and
m(1a(A)) = Tr(a)(A) (4.2.71)

for all X € p(a). If w is bijective, then o(m(a)) = o(a).
Proof. Let A € p(a). Then by Proposition [4.2.24] we know 7(A —a) = A — 7(a) € B* and
T‘ﬂ.(a)(A) =(\— 7r(a))71 =7\ — a)f1 = m(rq(A)). (4.2.72)

We see that p(a) < p(m(a)), so o(n(a)) < o(a) by taking complements. If 7 is bijective, then
o(a) = o(r71(n(a))) c o(n(a)) as well. O

4.2.26 Proposition Let A and B be unital C*-algebras and let m : A — B be a unital *-
homomorphism. Then

[m(@)] < flal (4.2.73)

for all a € A. In particular,  is continuous and || = 1.
Proof. By Proposition [4.2.25, we know that r(7(a)) < r(a) for all @ € A. Then by Corollary

E2.22
Im(@)| = v/r(z(a)*n(a)) = /r(n(a*a)) < /r(a*a) = |a]. (4.2.74)

This shows that 7 is continuous, and ||7r| = 1 since ||7(1)| = ||1] = 1. O

With these simple propositions in hand, we can prove a powerful theorem, known as the contin-
uous functional calculus for self-adjoint elements.

4.2.27 Theorem Let A be a unital C*-algebra and let a € A be self-adjoint. There exists a
unique unital *-homomorphism C(o(a)) — A, f +— f(a) such that p(a) = D' aa’ for all
complex polynomials p(z) = Y1 a;z'. Furthermore, for all f € C(o(a)), we have

@) [f(@)] =11,
(i) f(a)

(iii) 7(f(a)) = f(w(a))
(iv) o(f(a)) = f(o(a)).
Finally, if ge C(o(f(a))), then

(v) (g f)la) = g(f(a)).

is in the C*-algebra generated by 1 and a. In particular, [f(a),a] =0,

for any unital x-homomorphism w: A — B,

)
)
Note that f(m(a)) is well-defined in (iii) since o(mw(a)) < o(a), and (g o f)(a) is well-defined by

(iv).
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Proof. Tt clear that the map p — p(a) defined on polynomials p(z) = ZZ]’:O a;z" is linear.
Furthermore, since p(a) is self-adjoint for any polynomial p, we have

[p(a)]l = 7(p(a))

= sup {|A[ : A € o(p(a))}

=sup {|A\| : A e p(o(a))} (4.2.75)
= sup {|p(A)[ : A€ o(a)}

= |pll,

so the map p — p(a) is continuous. Since o(a) is a compact subset of R, the Weierstrass
approximation theorem (and the Tietze extension theorem) imply that the set of polynomials is
dense in C(o(a)). Therefore the map p — p(a) extends uniquely to a linear map f — f(a) on
C(o(a)). It follows by standard continuity arguments that || f(a)| = ||f| for all f € C(o(a)) since
[p(a)| = |p| for all polynomials.

It is clear that for polynomials p and ¢, we have (pq)(a) = p(a)q(a) and (p*)(a) = (p(a))*,
the latter relying on self-adjointness of a. That (fg)(a) = f(a)g(a) and (f*)(a) = (f(a))* for
arbitrary f,g € C(o(a)) again follows by standard continuity arguments using the fact that the
polynomials are dense in C(c(a)). Thus, f — f(a) is a unital *-homomorphism.

Once again, (ii) and (iii) clearly hold for polynomials. Thus, (ii) holds for f by a standard
argument using density of polynomials and completeness of the C*-algebra generated by 1 and
a. Likewise, (iii) holds by density of polynomials and by continuity of #-homomorphisms as
shown in Proposition [4.2.26]

To prove (iv), let (py,) be a sequence of polynomials such that p, — f. Given X € o(a), we know
pn(A) € pn(o(a)) = o(pn(a)), (4.2.76)

80 pn(A) — pn(a) is not invertible. Since the complement of A* is closed, taking the limit as
n — oo yields f(A) — f(a) ¢ A*, so f(A) € o(f(a)). Hence f(o(a)) < o(f(a)). On the other
hand, if A ¢ f(o(a)), then A — f is invertible in C'(o(a)) with inverse g € C(o(a)). Then

(A= f(a))g(a) = g(a)(A = f(a)) = 1, (4.2.77)
so A — f(a) is invertible, i.e. A ¢ o(f(a)). This proves o(f(a)) < f(o(a)), as desired.

To prove (v), we note that g — go f is a unital *-homomorphism C(o(f(a))) — C(o(a)), so g —
gof — (gof)(a)is a unital *-homomorphism C(c(f(a))) — A. Furthermore, if p is a polynomial,
then (po f)(a) = p(f(a)) since the map C(o(a)) — A respects addition and multiplication.
Therefore (g o f)(a) = g(f(a)) by uniqueness of the *-homomorphism C(o(f(a))) — A. O

4.2.28 Corollary Let A and B be unital C*-algebras. If m : A — B is an injective unital
x-homomorphism, then 7 is an isometry:

Im(a)]| = llal (4.2.78)

for alla e A.
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Proof. Since ||w(a)| < |al| by Proposition we need only show the reverse inequality.
First we show |a| < ||7(a)| for all self-adjoint elements a € A. Suppose a is self-adjoint and
|7(a)| < |all. Recall that p(a) = |a| and o(a) < R, so |a| € o(a) or —|a| € o(a), and
likewise for m(a). Choose f : [—|a|,|a|] — R such that f vanishes on [— |7 (a)|, |7 (a)|] and
f(lal) = f(~lal) = 1. Then f(m(a)) = 7(f(a)) = 0 but [f(@)] = |f| > 1, contradicting
injectivity of . Therefore |a| = |7 (a)| for self-adjoint a.

For arbitrary a € A, we have
|m(@)]* = |r(a)*n(a)| = [w(a*a)| = |a*a] = |a|?, (4.2.79)

which concludes the proof. O

4.2.29. Positive Elements

We shall continue to let A be a unital C*-algebra.

4.2.30 Definition An element a € A is positive if a is self-adjoint and o(a) < [0,0). We let
A, denote the set of all positive elements of A.

4.2.31 Proposition Let a € A be self-adjoint and let X € R such that X = |la|. Then a is
positive if and only if |\ —al < .

Proof. If a € Ay, then
IN—al|=r(A\—a) =sup{|u|:pecA—a)=X—0a(a)} <\ (4.2.80)
since o(a) < [0, |a|] = [0, A].
Suppose |A —al < A. If p € o(a), then
A—pl <r(A—a) =X —a| <A, (4.2.81)
which implies that © > 0, hence a € A,.. O

4.2.32 Proposition The set of positive elements Ay is closed.

Proof. Let (an)nen be a sequence in A converging to a € A. Since the star operation is contin-
uous, we have a’ — a*, but since a) = a,, for all n € N, we see that a is self-adjoint. Since the
norm is also continuous, we see that |a,| — |la|. In particular, there exists M > 0 such that
lan| < M for all n € N. Then |a| < M and |M — ay| < M for all n € N by Proposition

SO

IM —a| = lim |[M —a,| <M. (4.2.82)
n—o0
Since |al| < M and |M — a| < M, Proposition 4.2.31| implies that a is positive. O

4.2.33 Proposition The sum of two positive elements is positive.
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Proof. If a,be A, then a + b is self-adjoint and Proposition |4.2.31] implies

lal + o] = (a + &) < llal — all + [|ol = b < [la] + o] - (4.2.83)
A second application of Proposition |4.2.31]yields a + b€ Ay. O

4.2.34 Proposition Let a € A be self-adjoint. The following are equivalent.
(i) The element a is positive.
(i) There exists a unique positive be A such that a = b.
(iii) There exists a self-adjoint b€ A such that a = b*.
)

(iv) There exists c € A such that a = c*c.

Proof. The implications (ii) = (iii) and (iii) = (iv) are trivial.

(i) = (ii). By the continuous functional calculus, we can take 4/a and by the composition
property and the fact that (y/z)? = z on o(a), we have that a = (y/a)>. The fact that the square
root is real-valued and that the continuous functional calculus is a *-homomorphism imply that
Va is self-adjoint, and /o (a) = o(y/a) implies that y/a is positive. If a = b? for any other
positive b € A, then the fact that V22 = z for z € o(a) and the composition property imply that

Va=VE=b

(iv) = (i). First we prove a lemma. Given d € A, we claim that o(—d*d) < [0, 00) implies d = 0.
Write d = d; + ids, where d; and dy are self-adjoint. Then

d*d + dd* = 2d? + 2d3. (4.2.84)

If o(—d*d) = [0,0), then o(—dd*) < o(—d*d) u {0} = [0,00). Thus d*d = 2d? + 2d% — dd*
is positive, since it is the sum of positive elements. But then o(d*d) = {0}, which implies that
d*d = 0 and therefore d = 0 by the C*-property of the norm.

Continuing, we suppose a = c*c for some ¢ € A. by the continuous functional calculus, the
elements ay = (|a] + a)/2 and a— = (|a| — a)/2 are positive and a = a4 — a—. Furthermore,
observe that

aia_ = %(my? - a2> ~0. (4.2.85)
Defining d = ca_, we compute
—d*d=—a_c*ca_ = —a_(ay —a_)a_ = (a_)?, (4.2.86)
which implies that —d*d is positive. By the previous paragraph, we know d = 0. Thus,
0=c*d=c*ca_ =aa_ = —(a_)? (4.2.87)

which implies that a_ = 0, for example by self-adjointness of a_ and the C*-property of the
norm. Thus, a = a4 is positive. O

157



I1.4. C*-Algebras 4.3. Infinite tensor products

4.2.35 Definition We define a partial ordering on A, by setting a < b for a,b € A, if and
only if b—a € A, . Reflexivity and antisymmetry are easy to check and transitivity follows since
(c=b)+(b—a)=c—ae A} given c—b,b—a€ A;. In fact, Ay is a directed set since given
a,be Ay, we have a+be A, and a,b < a + 0.

4.2.36 Proposition Leta,be A, and let ce A. If a < b, then c*ac < c*be.
Proof. Since a € A, there exists d € A such that a = d*d. Then c*ac = c*d*dc = (dc)*dc, so
c*ac € A. Likewise, c*bc € A, since b € B,. Likewise, ¢*(b—a)c € Ay since b—a € A, so
c*ac < c*be. O
4.2.37 Proposition Ifae Ay and A = 0, then a < X if and only if |al| < .
Proof. We have the following equivalences:

a<A << oA—a)=X—o0o(a)c[0,0) < r(a)=|a] <A (4.2.88)

as desired. O

If we replace A in the above proposition by an arbitrary element, then we only have an implication
in one direction.

4.2.38 Proposition Ifa,be Ay and a < b, then |la| < |b].

Proof. We know b < |[|b] by Proposition 4.2.37, so a < ||b| by transitivity. But this implies
[al < |b]| by another application of Proposition 4.2.37 O

4.2.39 Proposition Ifa,be AL n AX and a <b, then b~' <a~!.

Proof. Note that a=!,b~! € A, by the continuous functional calculus. Since Va1 is self-adjoint,

we have
1=+vVatlava=t <Valbval (4.2.89)
Thus, o(vVa~1bva~1) < [1,00) and by the continuous functional calculus,

1> (\/ajbm)_l —Val Wt (4.2.90)

Multiplying by va=! to the left and right as in the first step now yields b=! < a™!. O

4.3. Infinite tensor products

4.3.1 Infinite tensor products of Hilbert spaces were introduced by [von Neumann| (1939)). They
were motivated by mathematical physics where one needs to describe quantum systems with
infinitely many degrees of freedom, see e.g. [Emch| (2009)); Bratteli and Robinson! (1997). The
original construction of infinite tensor products was generalized to von Neumann and C*-algebras
by |Guichardet| (1966), Blackadar| (1977)), and others. Meanwhile, the topic has been studied
in quite some detail in the operator algebra literature, see e.g. Nakagami (1970a,b)); Stgrmer
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(1971). A purely algebraic or better categorical approach allowing the construction of infinite
tensor products of modules over a given commutative ring has been given in (Chevalley, 1956,
Sec. I11.10). The work Ng| (2013) is also in that spirit. We will essentially follow Chevalley, (1956)
and construct the infinite tensor product as a module universal with respect to multilinear maps.
First we present the main algebraic construction, then we explain some of the subtleties which
distinguish infinite from finite tensor products, and finally we construct infinite Hilbert tensor
products and infinite tensor products of C*-algebras.

4.3.2 Let R be a commutative ring and (M;);er a possibly infinite family of R-modules. Consider
[ L;e; Mi, the product of the family (M;);e; within the category of R-modules. For each j € I let
7j ¢ | [;e; Mi — M denote the natural projection onto the j-th factor and ¢; : M; — [[,.; M;
the uniquely determined natural embedding such that

idpys, for ¢ =j and
AR 0 else

Given an R-module N one then understands by a multilinear map from ||
f i 11;e; Mi — N such that for each j € I and x € [[,.; M; with 7j(x) = 0 the map M; — N,
m — f(tj(m) + z) is linear. The set of multilinear maps from [[,.; M; to N will be denoted by
fm[in( [ ;e Mi, N ) It carries a natural structure of an R-module given by pointwise addition of
multilinear maps and pointwise action of a scalar on a multilinear map that is by

ie1 M; to N a map

f+g= (HMistf(IHg(w)eN) and rf = <HMZ'”H”C($)€N>

el iel

for all f,g € Mlin([[,c; Mi, N) and r € R. Since for j € I and z € [[;c; M; with 7j(z) = 0
the maps M; — N, m — (f + g)(t;(m) + z) = f(¢;(m) + x) + g(¢;(m) + x) and M; — N,
m — 1 f(t;(m) + x) are linear by assumption on f and g, the maps f + g and r f are multilinear
again, so im[in(l—[ M;, N ) is an R-module indeed with zero element the constant function
mapping to 0 € N.

el

4.3.3 Remarks Before proceeding further let us make several explanations concerning the no-
tation used.

(a) The space of multilinear maps Mlin([],.; M;, N) actually depends on the family (M;);e; and
the R-module N, so in principle one should write SJT[in((Mi)ieI, N) instead of Sﬁ[in( [ Lics M, N).
Nevertheless we stick to the latter notation since it is closer to standard notation for linear maps
and since it will not lead to any confusion.

(b) In case the index set I has just two elements iy, 2, one calls a multilinear map [ [,.; M; =
M;, x M;, — N a bilinear map. If the cardinality of I is 3, one sometimes calls a multilinear
map [ [,.; M; — N a trilinear map.

(c) In the following, when saying that (I,).ca is a partition of the set I we mean that each I, is
a non-empty subset of I, that I, n I, = J for a # b and that | J,.4 Io = I. The empty family is
regarded as a partition of the empty set.

(d) We will frequently use in this section the same symbol for maps with the same “universal”
properties despite those maps might be strictly speaking different. For example, m; will stand
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M; — My, whenever ke J < I. L1kew1se
M; and My, — []

for the canonical projections [ [;c; M; — My and [ ], ;
we use the same notation for the two canonical embeddlngs M — T,

el ]EJ
defined in and denote them both by ¢.

4.3.4 Lemma (cf. (Chevalley, 1956, Sec. IT1.10, Lemma 1 & 2)) Assume that (M;);er is
a family of R-modules, N an R-module, and f : [];c;

(i) Ifg: N — N'is an R-module map, then go f : ]

M; — N a mutilinear map.

ie; Mi = N' is multilinear.

(ii) Let J < I be non-empty, y = (yz)ld\J an element of the product HleI\J i, and Ly, :
[Ljes Mj — [ licy Mi the unique map such that for all x = (z;)jes € (M;)jes and k € I

xp forkeJ,
Tk Olgy (1’) =
yp  for ke I\J.

Then the composition fo iy, : HjeJ M; — N is multilinear.

(i) Let (I4)aea be a partition of the index set I which is assumed to be non-empty. Let (Ng)aea
be a family of R-modules, (gq)aca a family of multilinear maps gq : Hle] M; — Ng, and
h:]],ea No = N multilinear. Define g : [ [;c; Mi — [ [,e4 Na as the unique map such that

mpog=gpony forbeA,

where 7y for J < I as on the right side stands for the projection wy : [ [,c; Mi — ]
uniquely determined by mjomy = wj for all j € J. Then the composition hog : ||
s multilinear.

]EJ

—
’LEI

Proof. ad (i). Let je I and x € [ [,.; M; with mj(z) = 0. By multilinearity of f and linearity of
g, the map M; — N', m +— gf(tj(m) + ) then has to be linear, hence g o f is multilinear.

ad (7). Let j € J and x € [[,.; M; with m;(z) = 0. Then 7m;(¢y(x)) = 0 and frjy(cj(m) +
x) = f(,;(m) 4+ vyy(x) for all m € M; by construction of ¢j,. Hence the map M; — N,
m — fiyy(tj(m) + x) is linear by multilinearity of f. This proves that f o, is multilinear.

ad (ii). Given j € I let b be the unique element of A such that j € I,. Assume that z €[]
with 7;(z) = 0. By construction one has (7, (z)) = 0. Now let y € [ [,c4 Na such that

() 0 for a = b,
7a(y) =
Y ga7r, (x) for a # b.

’LEI

One then obtains for m € M;
: = (1 for a = b
ragi(m) + o) = g, (tj(m) + x) = gp(tj(m) + 7, (x)) for a =b,
9a71, (%) = 74 (y) for a # b.

Hence
hg(e;(m) + 2) = h(w(gs(e5(m) + 71,(2)) + )

and the map M; — N, m — hg(tj(m) + z) is linear as the composition of two linear maps. [
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4.3.5 Lemma Assume to be given a non-empty family of R-modules (M;)ier and a partition
(Ia)aca of the index set I. Then there exists a natural ismorphism

KI’A:HMi—)HHMi

el acAiel,

uniquely determined by the condition that m, o k1 4 = mr, for all a € A.

Proof. By the universal property of the product the R-module map £ = kra : [[;c; Mi —
IT weA HZ-E I, M; exists and is uniquely determined by the requirement that m, o Ky 4 = 7y, for all
a € A. Naturality also follows from the universal property of the product. It remains to show that
Kk is an isomorphism. By construction, m;(x) = mmak(x) = 0 for all ¢ € I and a(i) € A such that
i € I,(;), hence x = 0. So & is injective. It is also surjective. To see this pick z, € Hie[a M; for
each a € A. With a(i) for i € I defined as before put x = (m;(z4(;))),.;- Then, by construction,
mimak(x) = mime(x) = mi(x) = m;i(x,) for all a € A and i € I, hence (ﬂ'am(:p))aeA = (Z4)aea and
K 1is surjective. O

4.3.6 Proposition (Exponential law for multilinear maps) Let (M) be a family of R-
modules over a commutative ring R, N an R-module, and assume that J < I is a non-empty
subset such that the complement K = I\J is also non-empty. Then the map

1. : Miin (H M, Mlin (H Mk,N>> — Mlin (H MZ-,N> :

jedJ keK el
f— (1_[ M; 3 (x)icr — f((2))jes) (2)rex) € N)
iel
is an isomorphism which is natural in (M;)er and N.

Proof. We first show that n = nr s is linear. To this end let
.9 € Miin (HjEJ M, Min ([Toere Mk,N)) and 7 € R. Then, for all & = (2:)ics € [ L,e; M,

(n(f +9) (@) = (f + 9) ((z))jes) (@r)rex) = (f(z))jes) + 9((zj)jer) (@r)rer) =
= f((x))jer) ((@)ker) + 9((25)jes) (@p)rex) = (nf)(x) + (ng)(x) = (nf + ng)(z)

and

(n(r ) (@) = (rf)(@5)jes) (@rerx) = (rf (2)je0)) (@ner) = r(F(@))jes) (@r)rer) ) =
=r(nf(@)) = (r(nf)) (@) -
Hence 7 is an R-module map.

Next we show that 7 is an isomorphism by constructing an inverse. Given f e Smlin( [Lc; Mi, N )

we define f#: fm[in( HjeJ Mj) — Smlin( [ Tiere Mk, N) by the requirement that

el

fﬁ(y)(z) = f(xy,z) for all y = (yj)jeJ and 2 = (2x)kek »

where z, , is the element of [ [,_; M; uniquely determined by

ril@y.) = y; for i e J,
s z; for 1€ K.
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One thus obtains an R-module map

(=)% ; : Miin (H MZ-,N> — Mlin (H M;, Mlin (H Mk,N>> . fes ft

iel jeJ keK

which by construction is inverse to 7y, ;.
Naturality of 7 s in (Mj);jes and N is clear by definition. O

4.3.7 Definition Let (M;);er be a family of R-modules over a commutative ring R. By a
tensor product of (M;)ier one understands an R-module ), ; M; together with a multilinear
map 7 : [ [,c; Mi — &),o; M; such that the following universal property is fulfilled:

(ITensor) For every R-module N and every multilinear map f : [[,.; M; — N there exists a

el ~7

unique R-module map f : ®),.; M; — N such that the diagram
M —Ls N
1€l
Tl ?
& M;
el
comimutes.

The linear map f making the diagram comute will sometimes be called the linearization of the
multilinear map f.

Given a tensor product (@ZE 1 M, T), we will usually denote the image of an element (x;)er €
[ [,e; M; under the map 7 by ®ierx;.

4.3.8 Remarks (a) Strictly speaking, a tensor product of a family (M;),e; of R-modules is a
pair (@Ze 1 M;, 7') having the above properties. By slight abuse of language, one usually denotes
a tensor product just by its first component, the R-module ),.; M;. When helpful for clarity,
the associated map 7 : [ [;c; M; — &);e; M; will be denoted by 7(,y,)

.., or by 7.

(b) In the case where the index set I of the family (M;)er is infinite, one sometimes calls ), ; M;
an infinite tensor product.

4.3.9 Theorem Let (M;)ier be a family of R-modules over a commutative ring R. Then the
following holds true.

(i) A tensor product R,y M; of the family (M;)ier exists and is unique up to isomorphism. If I
is the empty set, then Q),.; My = R, if I contains a single element i., then Q,.; M; = M;, .
(i1) If (Ni)ier is a second family of R-modules and (f;)ier a family R-module maps f; : M; — Ny,
then there exists a unique linear map Qs fi : Ry Mi = &)y Ni making the diagram
iel iel
Tl ® fi
&) M;

el
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commute, where f: [ [,.; My = Q,e; Ni is the multilinear map (x;)ier — Qier fi(x:).

(i) Let J < I be a finite non-empty subset set such that Mj is isomorphic to R for all j € J.
Denote for each j € J by 1; the image of the unit 1 € R under the isomorphism R = M;
and by 15 the family (1;);es. Moreover, for every family y = (y;)jes let Ly : HieI\J M; —
[ Lic; Mi be the map which associates to x € HieI\J M; the family (x;)ier such that x; = m;(x)
forie I\J and x; = y; for i € J. Then the linearization Ty, : ®ieI\J M; - Qe M; of
the multilinear map Tro vy, : HieI\J M; — K;e; M; is an isomorphism.

Proof. ad (7). By its universal property, the tensor product of the family (M;);er is uniquely
determined up to isomorphism. Hence it remains to show the existence of the tensor product.
To this end consider the free R-module over the set | [, ; M; and denote it by F. Let ¢ :
[l;e; Mi — F be the canonical injection and U be the submodule of F' spanned by the elements

S (vi(ry; + 2) + (@i)ier) — 76 (1 (y;) + (wi)ier) — 0(1i(25) + (T)ier)

where j € I, yj,zj € Mj, r € R, and ()1 € 7rj71(0). Then put &),.; M; = F/U and define
7 as the composition of the canonical projection 7 : F' — ),.; M; with 6 : [[,.; M; — F.
By construction, 7 is multilinear. Assume that N is an R-module and f : [[,.; M; — N is
a multilinear map. By the universal property of free R-modules, f lifts to a unique R-linear
map f' : F — N such that f = f' o4§. By multilinearity of f, the map f’ vanishes on the
submodule U, hence descends to an R-linear f : ®ie; Mi — N such that f' = fon. Hence
f=fod=fomoé = for. By surjectivity of § and uniqueness of f’, f is the unique R-linear
map satisfying f = f o 7. Hence (@ie[ M;, 7') is a tensor product of the family (M;);e;.

In case I = (J, the cartesian product [[,.; M; is final in the category of sets, hence consists
of only one element x only. This means in particular that for an R-module N any map f :
[Lie; Mi = {*} = N is multilinear. Put ),.; M; = R and let 7 : {x} — R be the map x — 1.
Now let f : R — N be the unique linear map such that f(1) = f(x). Then f = f o7 and the
pair (R, 7) fulfills the universal property of the tensor product.

If I is a singleton with unique element g, then [ [,.; M; = M;, and a map f : [[,c; M; — N
is multilinear if and only if f as a map from M;, to N is linear. This implies that the pair
(Mi,,idpg;, ) then is a tensor product for the family (M;)ie;.

ad (ii). This is an immediate consequence of the universal property of the tensor product.

ad (iii). We construct an inverse to 7,5, : @ieI\J M; — ®,;c; M;. Let x = (x;)icr be an element
of [ [,e; M; and put

AMz) = (H l‘j) - Qjen\JTi (H l‘j) g (Ti)iens) -

jeJ jeJ

Then A : [[,c; M; — @ie\ 7 M; is multilinear by construction, hence factors through a linear map
A Qe Mi — ®Z.61\J M;. By definition, X is a left inverse of Tj1,. It is also a right inverse
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since for all (z;)ier € | [;c; M; by multilinearity of 7;

71, 0 Ao T ((Ti)ier) = Tia, ((H 95]> '®ie1\ﬂi> = (H ﬂfj) (21, omng ((@i)iens)) =

jedJ jedJ

= (H xj) (mrownn, ((®iens)) =710 b)) ,es ((@)iens) = 71 (xi)ier)

jed

and since by conbtruction of the tensor product the image of 77 is a generating system for the

R-module X) O

ZEI

4.3.10 Lemma Assume that (M;)ier is a finite family of R-modules such that for everyie I a
generating set S; of the R- module MZ- has been given. Then the set S = 7 (] [,c; Si) is a generating
set of the tensor product &)

el

'LEI

Proof. By construction of the tensor product in the proof of Theorem [£.3.9] it is clear that a
generating set of X),.; M; is given by the set of elements of the form ®erz; where (x;)ier €

[ l;e; Mi. Each of the x; can now be represented in the form

g

xTr; = Z T3 kSik with Tily---Tin; € R, Sily---3Sin; € Sz .
k=1
Hence, by multilinearity of 7 and with I = {i1,..., 4},

niq Nig

®ierri = 7 ((@i)ier) = Do o+ Do Tiky, oo Tighs, - T ((Sik)ier)
; —1

kip=1 ki,

S0 ®jerx; is a linear combination of elements of S and the claim is proved. ]

4.3.11 Lemma Let (M;)ier be a family of R-modules, (I,)aca a finite partition of the index set
I, and N an R-module. For a € A put N, = ®Ze[ M; and let 7, : Hle[ M; — N, denote
the canonical map. Assume that f : [[,cullic; Mi — N is a map which is componentwise
multilinear in the following sense.

(CM) Let be A and y = (Ya)aca € [luen [ Licr, Mi a family with y, = 0. If for all j € I and
families x = (x;)ier, € ]—L-elb M; with x; = 0 the map

i€l

Mj — N, mw— f(p(j(m) +x) +y)

is linear, then f factors through (Ta)aca @ [laeallic, Mi — |laea Na- More precisely,
there exists a unique multilinear map f : [1,e4 Nao — N such that

f = ? © (Ta>aeA .

Proof. We prove the claim by induction on the cardinality of A. If A is a singleton, then
[ Taca I Licr, Mi canonically coincides with [ [;.; M; and f: [[;c; M.
by the universal property of the tensor product there exists a unique linear map f : N, — N
such that f = f o ,.

; — N is multilinear, hence
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Now assume that the claim holds whenever the cardinality of the index set A is < n for some
n € N*. Assume to be given initial data (M;);er and N, a partition (I;)qeq of A with [A| =n+1
and componentwise multilinear map f : [[,c4 [ Lic; Mi — N. Fix a € A and put B = A\{a}.

i€ly ?
Let © = (7;)ier, € [ [;e;, Mi and & be the element of [ [ 4 [ [;e;, M: such that

- z for d=a,
ma(®) = 0 else

iEId

The map
fo TIT] M= Ny fsly) +3)

beB il
then is componentwise multilinear. Hence by inductive assumption there exists a unique mul-
tilinear map f; : [[,c Mo — N such that f, = f; o (7)rep. By assumption on f the map
[Licr. Mi — 9Map (Hbe B licr, Mi, N >, x — fz is multilinear which implies multilinearity of

i€l ?

f.:HMZ-—Mm[in(HNb,N), R

i€ly beB

Let F' : Ny — Mhn ([ [,c5 Vb, N) be its linearization. Application of the exponential law for
multilinear maps, Proposition now gives a multilinear map n(F') : [ [;c4 N¢ — N which
we denote by f. Given a family (x4)gea of families 24 = (2;);er, one checks

T ((ra(24)) 4o ) = F(7a(za)) ((1(26)) o) = Fr (16(28)) 1 g) = Fra (@)1eB) = f ((Ta)dea) -

Hence f o (4)gea = f. To finish the induction step it remains to prove uniqueness. So let
G : ] [4ea Na — N be another multilinear map such that go(74)4ea = f and consider the induced
linear map g* = 771(g) : Ny — Mlin([ [,cg No, N). Then for every x € [[,.; M; the relation

€ly

ot

G (Ta()) o (Th)beB = fo = [z 0 (Th)beB

is satisfied. Hence g#(7(z)) = f, for all z € [ ], 1, Mi which entails that g coincides with F. By
Proposition one obtains g = f. This finishes the induction step and the lemma is proved.[]

4.3.12 Proposition Let (M;);er be a family of R-modules and (I,)qea a finite partition of the
index set I. Then there exists a natural isomorphism

ar A - <:> A4} — (::) <:> A4%.

el acAiel,

Proof. Put N, = ®ie]a M; for a € A and let 7, : Hie[a M; — N, be the canonical map to the
tensor product. Let 74 : [[,c4 Na = & yea Vo be the canonical map to the tensor product of
the modules N,. Define 77 4 : [ [;,c; Mi — [ [,c4 Na as the unique map so that 7,077 4 = 1407y,
for all a € A. By construction 77,4 = (Ta)aca © k1,4, Where k74 ¢ [ [iey Mi — [laenl Lics, Mi is
the natural isomorphism from Lemma . The composition 74 o 77 4 then is multilinear by
Lemma hence factors through a linear map oy 4 : Q);c; Mi — &),e 4 Na that is

T4 0 (Ta)acA O K[, A = Q1 AOT] . (4.3.1)
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Naturality of ar 4 in (M;)er is clear by definition so it remains to construct an inverse to
ar . Consider the composition 77 0 k71 : [ 4 [Lic;, Mi — &®je;r M;. Assume that a € A and

(yn)bear(a} € I loen oy [ Lier, Mi have been chosen. Let yo € [[;c;, Mi be 0, put § = (ya)dea €
[Lieallier, Mi, and let y € [ [;c; M; be the family such that m;(y) = m;(yq(;) for all i € I, where

a(i) denotes the unique element of A such that i € I,;). In other words let y = k(). For
every j € I, and « = (24)er, € | [;,c; M; with 7;(z) = 0 the map

i€ly

Mj — Q) M;, me 106 " (ta(t;(m) +2) + ) = 71 (tj(m) + o1, (2) +y)

el

then is multilinear since 77 is multilinear and 7;(¢r, (z) + y) = 7j(z) + mj(y,) = 0. Hence
770k~ ! is componentwise multilinear and therefore, by Lemma [4.3.11] factors through the map
(Ta)aca * [ loen Hie[a M; — [,e4 No which means that

okl = ALLA © (Ta)aeA (4.3.2)

for some uniquely defined multilinear map A7 4 : ]_[ae A Ne = Qer M;. Let

A4 (X)) Ny — X)M;

acA el

be the linearization of A; 4. We claim that A; 4 is inverse to oy 4. By definition of A7 4 and
Egs. (4.3.1) and (4.3.2)) one concludes

ALACOQIAOCTI = A1AOTAO (Ta)acA © KI,A = AILA © (Ta)acA © K[,A = T .

Since the image of 77 generates X),.; M; as an R-module, A\; 4 has to be left inverse to ar 4.
Using Egs. (4.3.1) and (4.3.2)) again compute

a1 AN AOTAO (Ta)acA = 1A O A A©C (Ta)acA = QA OTA O HZZ =740 (Ta)aeA -
Since by Lemma [4.3.10 the image of 74 0 (74)4ea generates ), 4 ®ie[a M;, the equality

aI’A © )\I’A - id@aeA ®ie[a M;
follows and the proposition is proved. ]

4.3.13 Proposition and Definition Let (A;)ic; be a family of R-algebras. Then the tensor
product A = Q). Ai carries in a natural way the structure of an R-algebra where the product
map 1is defined by

CAXA— A (Qierai, ®ierbi) = Qier(a; - bi) -

In case each of the algebras A; is commutative, then A is commutative as well. Likewise, if each
A; is unital and 1; denotes the unit element of A;, then A is unital with unit given by 1 = ®;erl;.
One calls A the tensor product algebra of the family of algebras (A;)ier-

Proof. The map

H Ai = A, (aig)perx2y — Qier(ain - ai2)
(i,k)elx{1,2}
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is multilinear by bilinearity of the product maps on the A; and multilinearity of 77, so factors
through a linear map p: AQ A ~ ®(i,k)e[><{1,2} A; — A. Composition of p with the canonical
bilinear map Ax A — A® A gives the product map - : A x A — A and shows that the product on
A is well-defined. By construction, the product map - is bilinear. Given ®;cra;, Qicrb;, Ricrc; € A
one computes

(®ier a; - Qierbi) - ®ierci = Qier((ai - bi) - i) = Qier(a; - (bi - ¢;)) = Qierai - ( Rier bi - iercs) -
This entails that the product on A is associative. In the same way one shows that A is commutive

respectively unital if each of the A; is. O

4.3.14 As we have seen, the infinite tensor product construction works well for objects of algebraic
categories like R-modules, vector spaces or R-algebras. As soon as a topologies compatible with
the algebraic structure come in it becomes difficult and sometimes even impossible to construct
or even define
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Licensing

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondar-
ily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
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overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.
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The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
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You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher
of that version gives permission. B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement. C. State on the Title page the name of the
publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the
Document. E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices. F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. H. Include an unaltered copy
of this License. I. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence. J. Preserve the network
location, if any, given in the Document for public access to a Transparent copy of the Document,
and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission. K. For any section Entitled “Acknowledgements” or
“Dedications”, Preserve the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given therein. L. Preserve
all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles. M. Delete any section
Entitled “Endorsements”. Such a section may not be included in the Modified Version. N. Do
not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
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words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggre-
gate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of the same material does not give
you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of
a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . . Texts.”
line with this:
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with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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